КулЛиб - Классная библиотека! Скачать книги бесплатно
Всего книг - 706129 томов
Объем библиотеки - 1347 Гб.
Всего авторов - 272720
Пользователей - 124656

Последние комментарии

Новое на форуме

Новое в блогах

Впечатления

a3flex про Невзоров: Искусство оскорблять (Публицистика)

Да, тварь редкостная.

Рейтинг: 0 ( 1 за, 1 против).
DXBCKT про Гончарова: Крылья Руси (Героическая фантастика)

Обычно я стараюсь никогда не «копировать» одних впечатлений сразу о нескольких томах, однако в отношении части четвертой (и пятой) это похоже единственно правильное решение))

По сути — что четвертая, что пятая часть, это некий «финал пьесы», в котором слелись как многочисленные дворцовые интриги (тайны, заговоры, перевороты и пр), так и вся «геополитика» в целом...

В остальном же — единственная возможная претензия (субъективная

  подробнее ...

Рейтинг: 0 ( 0 за, 0 против).
medicus про Федотов: Ну, привет, медведь! (Попаданцы)

По аннотации сложилось впечатление, что это очередная писанина про аристократа, написанная рукой дегенерата.

cit anno: "...офигевшая в край родня [...] не будь я барон Буровин!".

Барон. "Офигевшая" родня. Не охамевшая, не обнаглевшая, не осмелевшая, не распустившаяся... Они же там, поди, имения, фабрики и миллионы делят, а не полторашку "Жигулёвского" на кухне "хрущёвки". Но хочется, хочется глянуть внутрь, вдруг всё не так плохо.

Итак: главный

  подробнее ...

Рейтинг: 0 ( 0 за, 0 против).
Dima1988 про Турчинов: Казка про Добромола (Юмористическая проза)

А продовження буде ?

Рейтинг: -1 ( 0 за, 1 против).
Colourban про Невзоров: Искусство оскорблять (Публицистика)

Автор просто восхитительная гнида. Даже слушая перлы Валерии Ильиничны Новодворской я такой мерзости и представить не мог. И дело, естественно, не в том, как автор определяет Путина, это личное мнение автора, на которое он, безусловно, имеет право. Дело в том, какие миазмы автор выдаёт о своей родине, то есть стране, где он родился, вырос, получил образование и благополучно прожил всё своё сытое, но, как вдруг выясняется, абсолютно

  подробнее ...

Рейтинг: +2 ( 3 за, 1 против).

Голографическая интерферометрия и лазерная микроскопия эритроцитов [Александр Николаевич Метелкин] (fb2) читать онлайн


 [Настройки текста]  [Cбросить фильтры]

Александр Метелкин Голографическая интерферометрия и лазерная микроскопия эритроцитов

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ СССР

ЦЕНТРАЛЬНЫЙ ОРДЕНА ЛЕНИНА

И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ


На правах рукописи


МЕТЕЛКИН

АЛЕКСАНДР НИКОЛАЕВИЧ


ГОЛОГРАФИЧЕСКАЯ ИНТЕРФЕРОМЕТРИЯ И

ЛАЗЕРНАЯ МИКРОСКОПИЯ ЭРИТРОЦИТОВ


14.00.29 – гематология и переливание крови

01.04.05 – оптика


Автореферат

диссертации на соискание ученой степени

кандидата биологических наук


Москва, 1981 г.

Работа выполнена во 2ом Московском ордена Ленина Государственном институте имени Н.И.Пирогова Министерства здравоохранения РСФСР и во Всесоюзном научно-исследовательском институте оптико-физических измерений.


Научные руководители:

доктор медицинских наук, профессор

Ю.А.Князев


доктор технических наук, ст.н.с.

В.М. Гинзбург


Официальные оппоненты:

доктор биологических наук, ст.н.с.

Ю.А Шарова

доктор физико-математических наук, доцент

Б.С.Ринкевичюс


Ведущая организация:

Всесоюзный онкологический научный. центр АМН СССР. Защита состоится "__ " 198 г. В __ часов на заседании Специализированного Совета Д 074.08.01 в Центральном ордена Ленина и ордена Трудового Красного Знамени научно-исследовательском институте гематологии и переливания крови /Москва, 125167, Новозыковский проезд, 4а/.


С диссертацией можно ознакомиться в библиотеке института.

Автореферат разослан "__ " 198_.


Ученый секретарь

Специализированного Совета

доктор медицинских наук, профессор Л.Н.Пушкарь


ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Расширение и углубление представлений о жизнедеятельности эритроцитов периферической крови непосредственно связано с внедрением в практику новейших методов исследований. Этим определяется актуальность проблемы анализа нефиксированных эритроцитов человека с целью изучения и количественной оценки их размеров, формы, массы и концентрации гемоглобина в норме и патологии методами голографической интерферометрии и лазерной микроскопии.

В литературе имеется сравнительно мало работ, посвященных анализу свойств нефиксированных эритроцитов, что объясняется трудностями исследования живых клеток. Традиционные методы анализа размеров эритроцитов, как правило, позволяют получать усредненные данные, что делает невозможным оценку внутренней структуры популяции эритроцитов. Даже такие современные методы исследования как электронная микроскопия /трансмиссионная и растровая/, требуют фиксации клеток, что приводит к определенному изменению их истинных размеров и значительно затрудняет изучение эритроцитов в динамике.

Методы голографической интерферометрии и лазерной микроскопии лишены описанных недостатков и позволяют исследовать живые клетки, анализировать форму эритроцитов по их поперечному сечению /Evans, Fang, 1972 /, производить количественную оценку формы /Reevs e a, 1978/, измерять объем и площадь поверхности эритроцитов, определять концентрации внутриклеточных веществ /Evans, Leblond, 1973/. Новые цитоморфометрические методы: голографическая интерферометрия и лазерная микроскопия позволяют проводить оценку состояния эритроцитов в динамике по таким важнейшим параметрам как форма и размеры, масса и концентрация плотных веществ в клетке. В настоящее время в Советском Союзе и за рубежом не имеется специальной голографической аппаратуры для исследования биомедицинских микрообъектов. В связи с вышеизложенным представляются актуальные цели и задачи данной работы.

Цели работы.

Целями работы являлись:

1. Выбор и реализация наиболее оптимальной схемы лазерного, голографического интерференционного микроскопа для анализа биологически1 микрообъектов, разработка количественных методик оценки размеров, формы, массы и концентрации гемоглобина в эритроцитах.

2. Проведение сравнительной характеристики свойств популяций эритроцитов в норме и патологии. Сопоставление полученных новыми методами результатов с известными данными. Количественный и качественный анализ основных преобразований формы и размеров эритроцитов в норме, при наследственных изменениях мембраны эритроцитов и при нарушениях состава плазмы.

Основные задачи исследования

1. Выбор и реализация наиболее оптимальной схемы лазерного, голографического интерференционного микроскопа для получения высококачественных интерферограмм и микрофотографий живых клеток малых размеров /51О мкм/.

2. Разработка количественных методик анализа эритроцитов на основе данных голографической интерферометрии и лазерной микроскопии по следующим параметрам: диаметр, максимальная и минимальная толщина, площадь поверхности, объем, коэффициент сферичности эритроцитов, масса и концентрация гемоглобина в клетках. Выработка количественных критериев оценки формы эритроцитов по их поперечному сечению.

З. Анализ свойств нефиксированных эритроцитов /на основе методик количественной и качественной оценки состояния клеток/ в норме, при нарушениях ионного состава плазмы /диффузный гломерулонефрит/, содержания глюкозы /сахарный диабет/ и при нарушениях свойств мембраны эритроцитов /наследственный микросфероцитоз/

4. Сравнительная характеристика эритроцитов в норме и наследственном микросфероцитозе в исследованиях in vitro при индуцированных изменениях формы клеток от дискоидальной до сферической /количественная и качественная оценка/.

Научная новизна.

Количественные данные, полученные на препаратах без изменения нативных свойств клеток с использованием оригинальных количественных методик интерференционного анализа, указывают на однозначную взаимосвязь между формой, размерами эритроцитов, массой и концентрацией в них гемоглобина. Характер взаимосвязи одинаков для эритроцитов в норме и при наследственном сфероцитозе /НС/. Выявлено полное отсутствие истинных сфероцитов в плазме крови детей больных НС. Установлено, что увеличение сферичности эритроцитов при данном заболевании связано с уменьшением площади поверхности клеток. Исследование in vitro явления перехода эритроцитов от двояковогнутого диска к сфере в норме и при НС показало, что этот переход в обоих случаях представляет собой последовательный обратимый процесс, однако форма поверхности эритроцитов сферической формы в норме и при НС различна. Установлено, что переход от диска к сфере у эритроцитов больных НС происходит при меньших физико-химических воздействиях, что указывает на увеличенную способность эритроцитов к сферуляции при данном заболевании.

Практическая ценность.

Результаты работы, начиная с 1978 года, внедрены в практику в Той детской клинической больнице г. Москвы, применяются в научно-исследовательской работе лаборатории гормонально обменной диагностики и кафедры факультетской педиатрии 2го МОЛГМИ им. Н.И.Пирогова, лаборатории цитобиохимии МНИИ педиатрии и детской хирургии МЗ РСФСР. Результаты исследований по разработке оптической схемы голографического микроскопа для анализа фазовых объектов малых размеров. (5-10 мкм) используются в ‚научно-исследовательской работе группы "Голографическая микроскопия" ВНИИ оптик физических измерений.

Публикации.

По материалам диссертации опубликовано 5 работ.

Апробация диссертационного материала.

Результаты работ докладывались на:

1. 4ом Всесоюзном семинаре "Физические методы и вопросы метрологии биомедицинских измерений", Москва, 1976 г.

2. Первом Всесоюзном научно-техническом симпозиуме "Оптическое приборостроение и голография", Львов, 1976 г.

3. Первой Всесоюзной конференции "Средства и методы квантовой электроники в медицине", г. Саратов, 1976 г.

4. 4ой Енисейской биофизической конференции "Механизмы регуляции эритропоэза", г. Красноярск, 1978 г.

5. Заседании гематологической секции общества педиатров г. Москвы /предс. чл.корр. АМН СССР Н.С. Кисляк/, г. Москва, 1980 г.

6. Заседаниях Научного Совета по проблеме "Голография" при АН СССР /предс. чл.корр. АН СССР Л.Д.Бахрах/, г. Москва, г. Ленинград, 1980 г.

7. Заседании Научного Совета кафедры "Физика твердого тела" Московского инженерно-физического института, г. Москва, 1981 г.

8. Заседании Ученого Совета МНИИ педиатрии и детской хирургии МЗ РСФСР /дир. проф. Ю.Е.Вельтищев/, г. Москва, 1981 г.

Структура работы.

Диссертация изложена на 176 страницах машинописного текста, состоит из введения, обзора литературы, трех глав собственных исследований, включающих описание методик анализа эритроцитов методами оптической голографии и экспериментальных исследований, заключения, выводов и приложения. Библиографический указатель содержит 137 источников литературы. Работа иллюстрирована 45 рисунками и 13 таблицами.

СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

В качестве материала исследования были взяты эритроциты периферической крови здоровых /20/ и больных детей: 5 с сахарным диабетом, 6 с диффузным гломерулонефритом, 12 с наследственным микросфероцитозом в возрасте от 6 до 12 лет. Обследовались эритроциты родственников детей, больных НС. В 2х случаях анализировались эритроциты, выделенные из удаленной по поводу НС селезенки.

Забор крови производился из локтевой вены. Для анализа использовалась гепаринизированная кровь в объеме 0,5+1,0 мл, не позднее чем через час после забора крови. Эритроциты исследовались при комнатной температуре /t =20-22⁰ С/ в аутоплазме или в физиологическом растворе в зависимости от типа эксперимента. Взвесь эритроцитов разделялась на две части. Первая часть /0,1 – 0,3 мл/ помещалась под микроскоп, далее проводилось фотографирование или микрокиносъемка интерферограмм и изображений клеток в лазерном свете. Интерференционные картины, снятые на фотопленку, обрабатывались по разработанным методикам расчёта интерферограмм. Вторая часть эритроцитов /0,3 – 0,4 мл/ отбиралась для измерения на рефрактометре показателя преломления внутри и вне клеток.

Эти данные использовались для обсчёта интерферограмм. Исследования эритроцитов проводились по следующим признакам:

1. Определение максимальной и минимальной толщины, площади поверхности, объема, коэффициента сферичности эритроцитов, массы и концентрации гемоглобина, определение формы эритроцитов по их поперечному сечению, анализ изменения поверхности по данным голографической интерферометрии и лазерной микроскопии в проходящем и отраженном свете.

2. Анализ осмотической резистентности эритроцитов по методу рассеяния лазерного излучения на взвеси эритроцитов в средах различной тоничности.

3. Измерение осмотической силы плазмы и физрастворов по электротермическому методу определения осмотического давления биологических жидкостей /Жуков Б.Н. с соавт., 1972/.

4. Контроль рН физрастворов рНметром.

Обработка результатов проводилась с помощью ЭВМ и калькуляторов, полученные данные, представлялись в виде таблиц, графиков, кривых распределения числа эритроцитов от измеряемых параметров, в виде микрофотографии в лазерном свете /увеличение 2250 раз/, интерферограмм эритроцитов, кино и видеомагнитофонных записей.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

1. Теоретическое обоснование использования методов голографической интерферометрии и лазерной микроскопии. Описание количественных методик анализа параметров эритроцитов данными методами

В основе оптической голографии лежит двухстадийньй принцип записи и восстановления объемного изображения объекта. Для записи изображения требуется наличие двух когерентных пучков света, которые обычно получают разделением луча лазера на светоделительной призме. При взаимодействии с фотослоем регистрирующей пластинки происходит одновременная фотозапись двух пучков: сигнального – прошедшего /или отраженного/ сквозь объект и опорного, прошедшего вне объекта. Результатом этого взаимодействия, зафиксированного обычным фотоспособом, является голограмма, которая несет полную информацию об объекте /и фазовую и амплитудную/. В данной работе голографический’ принцип был использован для создания оптической схемы двухлучевого интерферометра по типу Маха Цендера, в которой одно плечо интерферометра сформировано полем микрообъектива микроскопа, а второе его мнимым, голографическим изображением. 0сновной трудностью, с которой приходится сталкиваться при анализе биологических микрообъектов голографическими методами являются их малые размеры и слабое взаимодействие с излучением лазера /малый фазовый сдвиг/. Это приводит к тому, что уровень когерентных оптических шумов, возникающих в схеме, становится сравнимым с полезной информацией. Для устранения этого недостатка в схеме специально предусмотрено устройство для усреднения когерентных оптических шумов, которое позволяет получать высококачественные интерферограммы клеток размером до 5 мкм и их микрофотографии в лазерном свете /проходящем и отраженном/ с увеличением 2250 раз.



Рис. 1. А – Интерференционные картины. Слева направо: полосы в отсутствие объекта, интерферограммы сфероцита и дискоцита, их сечения, рассчитанные по интерференционным картинам. Б – принципиальная схема расчёта сечения эритроцита по его интерферограмме /пояснение в тексте/

Интерференционные картины, наблюдаемые в окуляре микроскопа, представляют собой в отсутствие объекта чередующиеся прямые, темные и светлые полосы, которые искажаются при внесении в поле микрообъектива клеток в зависимости от их оптических свойств (Рис. 1А). Задачей анализа интерферограмм эритроцитов являлось получение количественных характеристик о размерах, форме эритроцитов, массе и концентрации гемоглобина исходя из количественной оценки оптических свойств клеток.

Отклонение интерференционной полосы ∆У (x, y) (Рис. 1,Б) возникающее при внесении в поле объектива эритроцита, определяется уравнением:

∆У (Х,У) = S /λn(x,y) T (x, y) (1)

Где: S – расстояние между интерференционными полосами вне объекта; λ – длина волны излучения лазера (λ =0,6328 мкм для гелий-неонового лазера, используемого в данной работе); ∆n(x,y) разность показателей преломления внутри и вне клетки /измеряется при помощи рефрактометра/; T (x, y) – толщина эритроцита в точке измерения отклонения интерференционной полосы.

В уравнении /1/ величина ∆n(x, y) принимается за постоянную, так как показатель преломления внутри клетки постоянен. Это объясняется тем, что эритроцит по всему объему равномерно заполнен гемоглобином. Таким образом, в уравнении /1/ величина ∆У (x, y) измеряемая по интерферограмме клетки, связана прямой зависимостью с толщиной клетки T (x, y). Рассчитав значение толщины эритроцита вдоль его диаметра, можно построить поперечное сечение клетки /Рис. 1, Б/. Исходя из осевой симметрии эритроцитов, зная его сечение, рассчитывается площадь поверхности и объем эритроцитов. Более простой способ измерения состоит в расчёте этих параметров по микрофототрафиям эритроцитов, помещенных в аутоплазму, где клетки собраны в упорядоченные группы типа "монетных столбиков" .

Построение поперечного сечения эритроцитов позволяет проводить количественную оценку формы клетки. Для этого, при описании сечения эритроцита нами были введены коэффициенты: основные a(DC), b (BD), c (ED), d (AE) численные значения которых определялись по данным интерферометрии (Рис. 2) и производные: Кϕ = (b – d)/ c – коэффициент, описывающий степень прогиба центральной части клетки. Кэл.= b/a ,описывает периферическую часть’ клетки и с/R ( R радиус) показывает относительное расстояние от центра эритроцита до точки, где толщина клетки максимальна. Эти коэффициенты были использованы в дальнейшем для оценки изменений формы эритроцитов в норме и патологии (Рис. 5).




Рис. 2. Иллюстрация к определению основных ‘параметров формы эритроцитов (пояснение в тексте)

Величины для концентрации гемоглобина и его ‘массы в эритроцитах были получены для эритроцитов, переведенных в сферическую форму. Величина ∆n связана с объемной концентрацией внутриклеточных веществ (гемоглобина)– Cv ( Feleppa ‚ 1972) . Отсюда для концентрации гемоглобина имеем: Cv = ∆n/α, где α – характеристический коэффициент, определяемый оптическими свойствами вещества.

Масса гемоглобина m, определяется как произведение концентрации гемоглобина на, объем эритроцита. Для клеток сферической формы получаются простые выражения для Сv и m

Cv = 1,344 (∆Y max/S R) (2)

m = 5,63 ∆Ymax./S (3)

Где ∆Y max – максимальное отклонение интерференционной полосы, проходящей через центр эритроцита, S – расстояние между полосами вне клетки, R – радиус эритроцита.

Наблюдение эритроцитов в проходящем и отраженном пользованием лазерного освещения, с использованием микрокиносъемки и видеозаписи , позволило получить новые данные о процессах, преобразования формы эритроцитов от диска к сфере. Интерферограммы эритроцитов, полученные при их исследовании в отраженном свете, позволили наблюдать активное движение внутри эритроцитов в переходной стадии преобразования формы клетки (Рис. 6).

Проделанные в работе расчёты разрешающей способности лазерной микроскопии, оценка чувствительности голографической интерферометрии, определение погрешностей измерений, параметров формы и массы эритроцитов, показали, что предложенные методики оценки со стояния живых, нефиксированных эритроцитов расширяют возможности традиционных методов цитологического анализа и могут быть успешно использованы для количественных и качественных исследований эритроцитов и других типов клеток.

2. Сравнительная характеристика свойств эритроцитов по данным голографической интерферометрии и’ лазерной микроскопии в норме и патологии

В этой серии исследований эритроциты в аутоплазме сохраняли нормальную форму до конца эксперимента. Нами наблюдалось наличие неоднородности в распределении эритроцитов в зависимости от диаметра. Во всех обследованных группах детей /здоровых, больных диффузным гломерулонефритом, сахарным диабетом, наследственным сфероцитозом /НС/ наблюдалось полимодальное распределение эритроцитов.

Средние значения отдельных мод не зависели от вида патологии. Было выделено 5 средних модовых значений диаметров эритроцитов: 6,75 мкм, 7,45 мкм, 8,20 мкм, 8,80 мкм, 9,40 мкм. Процентное распределение эритроцитов по этим группам показало, что в норме 51,5% клеток относятся к группе со средним диаметром 8,20 мкм. При сахарном диабете зв этой группе находится 16,0% клеток, и 63,04 со средним диаметром 8,80 мкм. При гломерулонефрите менее выражено наличие центрального пика (38,5% со средним диаметром 8,20 мкм, 32,5% 8,80 мкм). При наследственном микросфероцитозе 35,0% эритроцитов имеют средний диаметр 8,20 мкм, и значительное число клеток малого диаметра (37,5# 7,45 мкм, 27,24 6,75 мкм). В отдельных случаях вместо полимодального распределения эритроцитов наблюдались две достоверно различающиеся группы (Р <0,05).

Сравнение эритроцитов по размерам: диаметр, толщина, площадь поверхности, объем, коэффициент сферичности, по параметрам формы Кϕ, К эл. С/R , по массе и концентрации гемоглобина в клетках не выявило значительных различий между группами здоровых детей и детей больных диффузным гломерулонефритом и сахарным диабетом. Популяции эритроцитов периферической крови здоровых детей и детей больных НС достоверно различались по всем параметрам (Р‹0,05) . (Таблица 1.) кроме объема, коэффициента С/R, массы (30,9 ± 1.1 пг, 29,1± 0,8 пг) и концентрации гемоглобина в клетках (36,6± 1,45%, 38,2± 1,46%).




Эритроциты, помещенные в аутоплазму, как в норме, так и при НС наблюдались в виде дисков, собранных в "монетные столбики". Истинные сфероциты при НС полностью отсутствовали, хотя они присутствовали в сухом мазке, как клетки уменьшенного диаметра. Средняя величина объема эритроцитов при НС практически совпадает со средней величиной объема эритроцитов в норме, а площадь поверхности снижена. Уменьшение площади поверхности эритроцитов при неизменном объеме приводит к разбуханию клеток при НС, что характеризуется сниженной величиной коэффициента сферичности: отношение площади поверхности к объему равно 1,22, в норме 1,65. Снижение коэффициента сферичности за счет уменьшения площади поверхности приводит к снижению осмотической резистентности эритроцитов при НС.



Рис. 3. Иллюстрация связи осмотической резистентности эритроцитов с коэффициентом сферичности. Пояснение в тексте.

Кривые осмотического гемолиза: Nг – число погибших эритроцитов в %, С NaCl концентрация хлористого натрия.

Распределение эритроцитов Nэ в % в зависимости от их коэффициента сферичности (S/V). Сплошная линия – норма, точечная – НС. Сдвиг кривой распределения эритроцитов в сторону меньших значений отношения S/V соответствует сдвигу кривой осмотической резистентности эритроцитов в сторону больших концентраций NaCl, что указывает на снижение осмотической резистентности при НС.

Кроме измерения средних величин методы голографической интерферометрии и лазерной микроскопии позволяют исследовать отдельные эритроциты одновременно по нескольким параметрам. Это позволяет выявлять характер соотношений между различными количественными характеристиками эритроцитов внутри популяции. Исследования показали наличие общих свойств эритроцитов в норме и при наследственном микросфероцитозе. Так, зависимость площади поверхности эритроцитов от их диаметров имеет общий вид в обоих случаях (Рис. 4).



Рис. 4. Зависимость площади поверхности S от диаметра эритроцитов /D/ в норме /ᴏᴏᴏᴏ/ и при НС /ххххх/.

Анализ эритроцитов по коэффициентам, характеризующим форму показал, что форма эритроцитов закономерно изменяется: с уменьшением диаметра наблюдается увеличение прогиба центральной части клеток, характеризующейся коэффициентом Кϕ, изменяется форма периферической части, которая оценивается по коэффициенту Кэл. и происходит сдвиг к центру клетки точки, в которой толщина эритроцита максимальна, уменьшается отношение С/R. При уменьшении диаметров эритроцитов от 9,40 мкм до 6,75 мкм величина, Кϕ увеличивается от 0,14 до 0,35, величина Кэл. увеличивается от 0,6 до 1,7, а отношение С/R уменьшается от 0,72 до 0,55 (Рис.5,А,Б,В)

Масса и концентрация гемоглобина в эритроцитах также изменяется в зависимости от диаметров эритроцитов и имеет одну и ту же закономерность как для нормы, так и для НС: с уменьшением диаметров эритроцитов наблюдается уменьшение их массы и увеличение концентрации гемоглобина в клетках (Рис. 5, Г, Д).




Рис. 5. А,Б,В – Зависимость параметров формы (Кэл, Кϕ, С/R); Г, Д – массы (m) и концентрации гемоглобина (Cv) от диаметров (радиусов) эритроцитов (D, R ) в норме (++++++) и при наследственном сфероцитозе (........) Пояснения в тексте.

Теоретический анализ количественных экспериментальных данных показал, что изменения площади поверхности, объема, массы и концентрации гемоглобина, наблюдаемые при уменьшении диаметров эритроцитов по-видимому, могут быт., объяснены с помощью учета последствий отщепления от поверхности эритроцитов микропузырьков определенного размера. С помощью расчётов установлено, что для изменения площади поверхности, объема, массы гемоглобина и его концентрации в эритроците со средними параметрами в норме до состояния со средними параметрами при наследственном сфероцитозе потребуется порядка 20 отщеплений микропузырьков со средним радиусом Rj =0,34 мкм. При этом сохраняются все количественные соотношения параметров эритроцитов, полученные в эксперименте. Теоретический анализ показал, что в отщепляющихся микропузырьках может находиться гемоглобин в концентрациях, меньших, чем в исходной клетке, при этом после каждого отщепления объемная концентрация гемоглобина ( Cv в %) в эритроците возрастает.

Сравнение результатов анализа эритроцитов методами голографической интерферометрии и лазерной микроскопии с литературными данными показало, что величина среднего диаметра эритроцитов (8,20 мкм) соответствует данным, полученным при измерениях эритроцитов в плазме. Измеренные новым методом средние величины площади поверхности и объема эритроцитов несколько ниже данных, имеющихся в литературе. Это объясняется тем, что при измерениях площади поверхности и объема эритроцитов традиционными методами не учитываются особенности формы эритроцита, а их форма экстраполируется в общем случае к форме цилиндра (Тодоров И., 1961, Мосягина Е.Н., 1969). Данные о средних величинах массы и концентрации гемоглобина в эритроцитах хорошо согласуются с результатами, полученными при измерениях этих параметров другими методами (Козинец Г.И., соавт., 1978).

Имеющиеся в литературе сведения о полимодальной структуре распределения эритроцитов человека по диаметру в норме (Вергунова 3.И., 1979), подтверждены в данной работе для эритроцитов в норме и патологии.

Количественная оценка изменений формы, площади поверхности эритроцитов, массы и концентрации гемоглобина в клетках дополняет имеющиеся в литературе сообщения об изменениях, происходящих с эритроцитами в процессе старения. Показано, что при старении эритроцитов наблюдается уменьшение его диаметра (Бриллиант М.Д. ‚1979), изменение формы клеток (Gonsoni е.a.,1976), возрастание концентрации гемоглобина (Seaman е.а., 1977).

Известные данные о решающей роли фрагментации поверхности эритроцита в процессах старения (Рябов б.И., 1971) дают основания для проведения теоретического анализа влияния процесса отщепления микропузырьков от поверхности эритроцитов на изменение его свойств. Результаты теоретических расчётов согласуются с экспериментальными данными, что может служить еще одним подтверждением в пользу представлений о роли фрагментации поверхности эритроцитов в процессе их жизнедеятельности. Результаты исследований, проведенных методами голографической интерферометрии и лазерной микроскопии, хорошо согласуются с современными представлениями об эритроците, что служит доказательством достоверности результатов. Данные о наличии общих свойств эритроцитов для нормы и патологии указывают на существование единого механизма, под действием которого происходит изменение эритроцитов при различных условиях их жизнедеятельности.

Результаты исследований, проведенных методами голографической интерферометрии и лазерной микроскопии, хорошо согласуются с современными представлениями об эритроците, что служит доказательством достоверности результатов. Данные о наличии общих свойств эритроцитов для нормы и патологии указывают на существование данного механизма, под действием которого происходит изменение эритроцитов при различных условиях их жизнедеятельности.

3. Голографическая интерферометрия и лазерная микроскопия эритроцитов in vitro

В этой серии экспериментов исследовались эритроциты в норме и эритроциты детей больных наследственным микросфероцитозом (НС). Для облегчения расчётов и единообразия получения результатов анализ эритроцитов, помещенных в аутоплазму, проводился при условиях, когда клетки находились в виде "монетных столбиков", при этом истинных микросфер при НС не наблюдалось.





Рис. 6. Кинограмма интерференционных картин эритроцитов в отраженном лазерном свете. Время между кадрами 1 сек. (Движение внутри эритроцитов наблюдается по смещению интерференционных полос).

При разведении аутоплазмы изотоническим раствором NaCl в соотношении 1:1 и 1:5 в условиях изотонии как в норме, так и при НС, наблюдался распад "монетных столбиков" на отдельные клетки нормальной формы (двояковогнутый диск). Дальнейшее разведение аутоплазмы 0,9% раствором NaCl (1:2 и 1:8) приводило к появлению эритроцитов с выступами по краям и отдельными неровностями на поверхности. При разведении аутоплазмы (1:1О и более) происходило увеличение неоднородности поверхности эритроцитов, изменение их формы до эллипсоидальной и далее осуществлялся переход эритроцитов в сферическую форму. С помощью микрокиносъемки в отраженном лазерном свете было показано наличие интенсивного внутриклеточного движения в эритроцитах, находящихся в переходном от диска к сфере состоянии. (Рис. 6). Анализ размеров исходной формы двояковогнутого диска и конечной (сферической) показал, что изменение формы клеток сопровождается уменьшением их диаметра и площади поверхности в норме и при НС (Р<0,01), а объем при этом достоверно не изменяется.

Уменьшение общей площади поверхности эритроцитов, отмечаемое по данным интерферометрии, объясняется, по-видимому, тем, что сферуляция сопровождается образованием микровыростов, малые размеры которых не могут быть количественно учтены данным методом. Нами наблюдалось два типа сфероцитов: шиповидные с выростами на поверхности и игольчатые, с исчерченной поверхностью, без выростов.

Первый тип отмечался в основном у эритроцитов крови здоровых детей, второй у эритроцитов больных НС. Было показано, что процесс перехода от диска к сфере обратим: при переносе эритроцитов сферической формы в аутоплазму они восстанавливают свою форму до двояковогнутого диска, что подтверждается данными сканирующей электронной микроскопии (Denhcke, 1968, Weed Besis, 1973).

Для проведения сравнительной характеристики эритроцитов в норме и при НС по признаку сферуляции было выбрано два основных разведения плазмы (1:5 и 1:1О), при которых проводился анализ распределения эритроцитов в зависимости от их формы (таблица 2).

Таблица 2. Процентное распределение эритроцитов в зависимости от их формы при двух разведениях плазмы изотоническим раствором (1:5 и 1:1О) в норме и при наследственном сфероцитозе ( НС)




Сравнение полученных данных показало, что эритроциты больных НС переходят от формы двояковогнутого диска к сфере при меньших разведениях аутоплазмы изотоническим раствором NaCl по сравнению с нормой.

Переход эритроцитов в сферическую форму наблюдался также при механическом воздействии на клетку, так же при добавлении гетерогенной сыворотки. Эритроциты, выделенные из селезенки сразу после ее удаления по поводу НС, также имели сферическую форму.

Второй тип изменений формы эритроцитов имел место при разведении взвеси эритроцитов изотоническим раствором глюкозы. При этом наблюдалось общее искажение формы эритроцита, образование утолщения по краям, нарушение симметрии формы эритроцитов.

Третья группа изменений формы эритроцитов имела место при анализе клеток, предварительно подвергшихся аутогемолизу ( t =37 градусов по С) , 5-6 часов).Эритроциты при разведении аутоплазмы изотоническим раствором NaCl исследовались в микроскопе с лазерным освещением. Клетки имели искаженную поверхность, на которой постепенно

выбухали микропузырьки. Они некоторое время сохраняли связь с эритроцитами в виде жгутиков, а затем полностью отделялись от клеток.

Полученные данные можно представить в виде схемы (Рис. 7), в которой показаны три пути изменения размеров и формы эритроцитов. Причем, если первый и третий пути являются в принципе обратимыми, то второй путь необратим, вследствие потери части поверхности клетки в виде микропузырьков.




Рис. 7. Основные типы изменений формы и размеров эритроцитов. (Пояснение в тексте.)

Исследованные типы изменений формы эритроцитов хорошо согласуются с классификацией, предложенной на основе анализа клеток по данным электронной микроскопии (Козинец Г.И., соавт., 1979) но по данным голографической интерферометрии и лазерной микроскопии размеры эритроцитов значительно отличаются от результатов, полученных методом растровой электронной микроскопии, так как при обработке эритроциты уменьшаются в размерах (Крымский Л.Д. ‚соавт., 1976).

Исследование новыми методами динамики перехода формы эритроцита от диска к сфере и явления отщепления микропузырьков от поверхности клеток представляет значительный интерес, так как по современным данным эти явления лежат в основе того многообразия форм и типов эритроцитов, наблюдаемых с помощью электронномикроскопических методов в норме и патологии. Показано, что сферуляция эритроцитов может происходить in vitro как при действии различных веществ ( La Selle e. а. ,1980), так и пря взаимодействии с макрофагами ( Guerry е.а. , 1967). Длительное хранение эритроцитов также в конечном итоге приводит к изменению формы эритроцитов до сферической (Крымский Л.Д., соавт., 1976). Сфероциты отмечаются при различного рода анемиях и других заболеваниях, приводящих к нарушению свойств эритроцитов (Идельсон Л.И., 1979). Таким образом, явление сферуляции, наблюдаемое как in vivo так in vitro является единым ответом клетки на разнородные воздействующие факторы. С другой стороны, показано, что нормальная селезенка, задерживает сфероциты независимо от того, врожденное это или искусственно созданное изменение эритроцитов (Канаев С.В., Тушинская М.М., 1979/. В связи с вышеизложенным представляет интерес тот факт, что эритроциты при НС хотя и не имеют форму сферы, однако переход от диска к сфере при данном заболевании происходит при более слабых воздействиях по сравнению с нормой.

Результаты работы показали, что такие сложные процессы как явление сферуляции эритроцитов и отщепление микропузырьков от поверхности могут быть прослежены в динамике методами голографической интерферометрии и лазерной микроскопии. Оценка этих сложных явлений новыми методами углубляет представления о процессах жизнедеятельности эритроцитов периферической крови.

ЗАКЛЮЧЕНИЕ

Количественная оценка состояния эритроцитов в норме и патологии, проведенная методами голографической интерферометрии и лазерной микроскопии в проходящем и отраженном свете показана эффективность использования данных методов для анализа эритроцитов, позволило в количественном виде выразить общие закономерности изменения размеров и формы эритроцитов, массы гемоглобина и его концентрации в клетках вне зависимости от патологии. Применением новых методов с использованием микрокиносъемки и видеозаписи позволило на нефиксированных клетках проследить основные виды преобразования формы и размеров эритроцитов образования микропузырьков на поверхности эритроцитов и перехода от диска к сфере и дать им количественную оценку.

В результате проделанной работы была разработана схема голографического интерференционного микроскопа, выявлены достоинства метода (возможность количественной оценки нефиксированных клеток), и недостатки (трудоемкость обработки данных), указаны пути улучшения прибора: введение электронного устройства съема оптической информации и ввода ее в ЭВМ). Разработаны методики интерференционного анализа эритроцитов.

Методы голографической интерферометрии и лазерной микроскопии в значительной степени дополняют традиционные микроскопические методы исследования: анализ клеток в проходящем свете, методы темного поля и фазового контраста, они обладают рядом преимуществ, расширяющих возможности оптической микроскопии. Анализ интерферограмм эритроцитов позволяет проводить количественную оценку формы клеток вводя соответствующие коэффициенты, вычислять площадь поверхности и объем эритроцитов. Одновременно можно измерять массу гемоглобина и его концентрацию. Голографический микроскоп позволяет наблюдать клетки в проходящем лазерном свете и выявлять наличие неоднородностей в клетках. Микрокиносъемка интерферограмм эритроцитов в отраженном лазерном свете позволяет следить за преобразованиями формы и поверхности клеток. Качественная и количественная оценка объектов исследования может проводится без их окраски и фиксации, что позволяет проводить анализ клеток в динамике.

ВЫВОДЫ

1. На основе отечественной аппаратуры создан оригинальный макет голографического микроскопа, который дает возможность методами интерферометрии и лазерной микроскопии проводить количественную и качественную оценку состояния эритроцитов в динамике.

2. Получены экспериментальные данные, позволяющие в количественном отношении анализировать форму эритроцитов, измерять площадь поверхности, объем клеток, массу гемоглобина и его концентрацию в эритроцитах без их окраски или фиксации, что дает возможность изучать в динамике процессы сферуляции эритроцитов и отцепление микропузырьков от поверхности эритроцитов.

3. Анализ параметров поперечного сечения эритроцитов и их интерферограмм позволил выявить следующие закономерности:

а) при уменьшении диаметра эритроцитов происходит изменение формы центральной и периферической части клеток и сдвиг максимальной толщины к центру.

6) с уменьшением диаметра эритроцитов наблюдается уменьшение площади поверхности клеток и массы гемоглобина, увеличение его объемной концентрации.

в) распределение эритроцитов в зависимости от их диаметров носит полимодальный характер с наличием пяти пиков. Эти закономерности характерны для эритроцитов как в норме, так и при патологических состояниях.

4. Не показано достоверных различий между эритроцитами в ‘норме при диффузном гломерулонефрите и сахарном диабете по измеренным параметрам. Эритроциты больных наследственным сфероцитозом в аутоплазме имеют форму утолщенных двояковогнутых дисков с уменьшенной площадью поверхности и неизменным объемом, что соответствует снижению коэффициента сферичности клеток при данном заболевании по сравнению с нормой.

5. Наблюдаемое в эксперименте изменение формы эритроцитов от дискоидальной до сферической представляет собой обратимый процесс, который сопровождается уменьшением общей площади поверхности без значительного изменения объема. Этот переход не зависит от природы действующего фактора и является специфической реакцией эритроцитов на внешние воздействия. Эритроциты при наследственном микросфероцитозе переходят в сферическую форму при меньших по сравнению с нормой воздействиях на клетки.

СПИСОК РАБОТ ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Изучение гемолиза эритроцитов методам голографической интерферометрии. Гинзбург В.М., Метелкин А.Н., Степанов Б.М., Ионов Б.В., Чернух А.М. В сб. Научные труды МИРЭА – М., 1977, вып. 9, с. 146-151.

2. Метелкин А.Н. Особенности исследования геометрических свойств живых клеток методом голографической интерферометрии. В с6. Научные труды ВНИИФТРИ. М., 1976, стр. 40-46.

3. Метелкин А.Н., Ионов Б.В. Применение голографической интерферометрии для изучения биомедицинских микрообъектов. В сб.: Средства и методы квантовой электроники в медицине.

Саратов, Изд-во Саратовского ун-та, 1976, с. 193-194.

4. Метелкин А.Н. Определение размеров эритроцитов методом голографической интерферометрии. В сб.: Четвертая Енисейская биофизическая конференция "Механизмы регуляции эритропоэза". Тез. док. Красноярск, 1978, с. 141-142.

5. Метелкин А.Н., Манин В.Н., Румянцев А.Г. Анализ формы и размеров эритроцитов при наследственном сфероцитозе и у здоровых детей методом голографической интерферометрии. Педиатрия, 1980, №5, с. 4345.