КулЛиб - Скачать fb2 - Читать онлайн - Отзывы
Всего книг - 402681 томов
Объем библиотеки - 529 Гб.
Всего авторов - 171362
Пользователей - 91546

Впечатления

Stribog73 про Бердник: Последняя битва (Научная Фантастика)

Ребята, представляю вам на суд перевод этого замечательного рассказа Олеся Павловича.

Рейтинг: 0 ( 0 за, 0 против).
Stribog73 про Римский-Корсаков: Полет шмеля (Переложение В. Пахомова) (Партитуры)

Произведение для исполнения очень сложное. Сыграть могут только гитаристы с консерваторским образованием.

Рейтинг: 0 ( 0 за, 0 против).
Stribog73 про Бердник: Остання битва (Научная Фантастика)

Текст вычитан.

Рейтинг: 0 ( 0 за, 0 против).
Stribog73 про Варфоломеев: Две гитары (Партитуры)

Четвертая и последняя из имеющихся у меня обработок этого романса.

Рейтинг: 0 ( 0 за, 0 против).
Stribog73 про Бердник: Остання битва (Научная Фантастика)

Спасибо огромное моему другу Мише из Днепропетровска за то, что нашел по моей просьбе и перефотографировал этот рассказ Бердника.

Рейтинг: 0 ( 0 за, 0 против).
Stribog73 про Елютин: Барыня (Партитуры)

У меня имеется довольно неплохая коллекция нот Елютина, но их надо набирать в MuseScore, как я сделал с этой обработкой. Не знаю когда будет на это время.

Рейтинг: +1 ( 1 за, 0 против).
nnd31 про Горн: Дух трудолюбия (Альтернативная история)

Пока читал бездумно - все было в порядке. Но дернул же меня черт где-то на середине книги начать думать... Попытался представить себе дирижабль с ПРОТИВОСНАРЯДНЫМ бронированием. Да еще способный вести МАНЕВРЕННЫЙ воздушный бой. (Хорошо гуманитариям, они такими вопросами не заморачиваются). Сломал мозг.
Кто-нибудь умеет создавать свитки с заклинанием малого исцеления ? Пришлите два. А то мне еще вот над этим фрагментом думать:
Под ними стояла прялка-колесо, на которою была перекинута незаконченная мастерицей ткань.
Так хочется понять - как они там, в паралельной реальности, мудряются на ПРЯЛКЕ получать не пряжу, а сразу ткань. Но боюсь

Рейтинг: +5 ( 5 за, 0 против).

Фрактальная геометрия природы (fb2)

- Фрактальная геометрия природы 8.18 Мб, 652с. (скачать fb2) - Бенуа Мандельброт

Настройки текста:



Бенуа Мандельброт Фрактальная геометрия природы

Москва: Институт компьютерных исследований, 2002, 656 стр.

ПРЕДИСЛОВИЕ

Данная работа представляет собой расширенное переиздание моего эссе 1977 г. «Фракталы: форма, случайность и размерность», которое, в свою очередь, явилось расширенным переизданием написанного на французском языке эссе 1975 г. «Фрактальные объекты: форма, случайность и размерность»1. В переиздания добавлялись новые иллюстрации, текст серьезно пересматривался, в результате чего почти каждый раздел подвергался изменениям, а некоторые места я удалял совсем; кроме того, в книгу вносились дополнения, посвященные моей прежней работе, и — что более важно — обширные дополнения, посвященные новым исследованиям.

Существенный вклад и в эссе 1977 г., и в эту книгу внес Рихард Ф. Фосс, в особенности благодарен я ему за создание фрактальных хлопьев, большей части ландшафтов и планет. Программы, с помощью которых были выполнены многие поразительные иллюстрации специально для нового издания настоящего эссе, были предоставлены В. Аланом Нортоном.

За неоценимое, тесное и длительное сотрудничество я хочу поблагодарить Зигмунда В. Хандельмана и Марка Р. Лаффа, которые выполнили вычисления и подготовили графический материал, а также X. Катарин Дитрих и Дженис Т. Ризничок, редактировавших и набиравших текст.

Благодарности отдельным лицам за программы, с помощью которых выполнены иллюстрации, и за прочее разнообразное содействие можно найти в конце книги после библиографического списка.

Я чувствую себя в неоплатном долгу перед Исследовательским Центром имени Томаса Дж. Уотсона корпорации IBM за поддержку моих исследований и книг. Ральф Э. Гомори — сначала руководитель группы, затем управляющий отделом, а ныне вице-президент IBM по исследовательской работе — находил способы поддержать мою работу еще тогда, когда она была не более чем игрой, и сейчас продолжает оказывать мне любую помощь, какая бы ни потребовалась.

Моя первая научная публикация увидела свет 30 апреля 1951 г. На протяжении прошедших лет многим казалось, что я слишком непостоянен в выборе тем для своих исследований. Однако этот кажущийся беспорядок скрыл под собой глубокое единство цели, которое как раз и призвано открыть настоящее эссе — наряду с двумя предшествующими работами. Как бы то ни было, большая часть моих трудов — это муки рождения новой научной дисциплины.

I ВВЕДЕНИЕ

1 ТЕМА

Почему геометрию так часто называют «холодной» и «сухой»? Одна из причин — ее неспособность описать форму облака, горы, дерева или береговой линии. Облака не являются сферами, горы — конусами, береговые линии нельзя изобразить с помощью окружностей, кору деревьев не назовешь гладкой, а путь молнии — прямолинейным.


В более общем виде я заявляю, что многие формы Природы настолько неправильны и фрагментированы, что в сравнении с евклидовыми фигурами (евклидовым в данной работе мы будем называть все, что относится к обычной геометрии) Природа демонстрирует не просто более высокую степень, но совершенно иной уровень сложности. Количество различных масштабов длины в естественных формах можно считать бесконечным для каких угодно практических задач.

Существование таких феноменов бросает нам вызов и побуждает заняться подробным изучением тех из форм, которые Евклид отложил в сторону из-за их «бесформенности» — исследовать, так сказать, морфологию «аморфного». Математики же пренебрегли этим вызовом и предпочли бежать от природы путем изобретения всевозможных теорий, которые никак не объясняют того, что мы видим или ощущаем.

Рискнув ответить на вызов, я задумал и разработал новую геометрию Природы, а также нашел для нее применение во многих разнообразных областях. Новая геометрия способна описать многие из неправильных и фрагментированных форм в окружающем нас мире и породить вполне законченные теории, определив семейство фигур, которые я называю фракталами. Наиболее полезные фракталы включают в себя элемент случайности; как правильность, так и неправильность их подчиняется статистическим законам. Кроме того, описываемые здесь фигуры стремятся к масштабной инвариантности, т. е. степень их неправильности и/или/ фрагментации неизменна во всех масштабах. Центральное место в настоящей работе занимает фрактальная (или хаусдорфова) размерность.

Одни фрактальные множества представляют собой кривые или поверхности, другие — несвязную «пыль»; есть и такие, чья форма столь причудлива, что ни наука, ни искусство не в состоянии предложить подходящее для них название. Я предлагаю читателю ознакомиться с ними прямо сейчас, просмотрев иллюстрации в книге.

На многих из этих иллюстраций представлены формы, которые до сих пор никто не рассматривал, на других же показаны давно известные конструкции, причем нередко впервые именно в таком виде. В самом деле, хотя фрактальная геометрия как таковая появилась лишь в 1975 г., многие из ее концепций и инструментов были разработаны раньше — пусть и для целей, в корне отличных от моей. Старые камни в кладке стен нового здания обеспечили фрактальной геометрии чрезвычайно мощный строго математический фундамент, в результате чего математика обогатилась новыми захватывающими идеями и проблемами.

И все же, в рамках данной работы меня не интересуют ни абстракция, ни обобщение ради самих себя; эта книга не является ни учебником, ни математическим трактатом. Несмотря на ее размер, я склонен определить ее жанр как научное эссе, так как изложенный в ней материал представляет только мою собственную точку зрения и ни в коем случае не претендует на всеохватывающую полноту. Кроме того, как и во многих других эссе, в ней немало отступлений и интерлюдий.

Такой неформальный подход призван помочь читателю избежать тех частей текста, которые лежат вне области его интересов или за пределами его компетенции. По всей книге разбросано множество «легких» в математическом смысле мест, особенно ближе к концу. Листайте книгу, где-то останавливаясь, что-то пропуская — по крайней мере, при первом и втором прочтении.

ИЗЛОЖЕНИЕ ЗАДАЧ

В этом эссе сводятся вместе аналитические методы различных наук с целью создания нового философско-математического синтеза. Таким образом, оно может рассматриваться и как сборник прецедентов, и как манифест. Кроме того, оно открывает изумленному взгляду совершенно новый мир пластичной красоты.

СБОРНИК НАУЧНЫХ ПРЕЦЕДЕНТОВ

Термином «сборник прецедентов» юристы называют собрание реальных, имевших место в юридической практике случаев, объединенных общей темой. В науке соответствующего термина нет, поэтому я предлагаю его позаимствовать. Наиболее важные случаи требуют многократного рассмотрения, однако и менее значительные также заслуживают

внимания; на интенсивность обсуждения нередко влияет и наличие похожих «прецедентов».

Рассмотрение одного из прецедентов касается широко известного приложения широко известного математического аппарата к одной широко известной задаче природы; я имею в виду винерову геометрическую модель физического броуновского движения. К нашему удивлению, винеровский процесс нигде больше непосредственно не применим, и это наводит на мысль, что среди феноменов высокой степени сложности, с которыми мы имеем дело, броуновское движение представляет собой особый случай, исключительно простой и неструктурированный. Тем не менее, я включил броуновское движение в настоящую книгу, поскольку многие весьма полезные фракталы представляют собой не что иное, как тщательные его модификации.

Другие исследования затрагивают, главным образом, мою собственную работу, ее дофрактальные предпосылки и дальнейшее развитие, которым она обязана трудам тех ученых, которые откликнулись на предшествующие данному эссе 1975 и 1977 гг. Некоторые «прецеденты» относятся к высокозрелищным горным ландшафтам и тому подобным вещам, тем самым выполняя, наконец, обещание, заложенное давным-давно в слово «геометрия». Другие имеют дело с субмикроскопическими ансамблями частиц — важнейшим объектом изучения для современной физики.

Основная тема некоторых примеров носит несколько эзотерический характер. В других примерах тема близка и знакома, однако ее геометрические аспекты не были до сих пор адекватно рассмотрены. В этой связи вспоминается замечание Пуанкаре о том, что есть вопросы, которыми задаемся мы, и вопросы, которые задают себя сами. А вопрос, который уже давно и безответно себя задает, считается детским.

Из-за этого в своих предыдущих эссе я неустанно подчеркивал тот факт, что фрактальный подход является одновременно и эффективным, и «естественным». Следует не только принять его с распростертыми объятиями, но еще и поразиться тому, как мы смогли так долго без него обходиться. Во избежание ненужных дискуссий я также сократил в ранних текстах до минимума разрыв между изложением стандартных взглядов и опубликованных материалов, изложением их с новых позиций и представлением своих собственных идей и результатов. В настоящем эссе я, напротив, весьма тщательно разграничиваю заслуги.

Кроме того, хочу со всей категоричностью заявить, что я не считаю фрактальную точку зрения панацеей; анализ каждого случая должен оцениваться согласно критериям, принятым в соответствующей области (т.е., как правило, исходя из его способности организовать, объяснить и предсказать), а не рассматриваться как очередной пример чисто математического построения. Поскольку я был вынужден обрывать рассмотрение каждого случая прежде, чем оно принимало узкоспециализированный характер, подробную информацию читателю придется поискать где-то в другом месте. Данное эссе — от начала и до конца — одно сплошное предисловие (в подражание д'Арси Томпсону [568]). Специалист, ожидающий большего, будет разочарован.

МАНИФЕСТ: У ГЕОМЕТРИИ ПРИРОДЫ ФРАКТАЛЬНОЕ ЛИЦО

Причиной же, собравшей все эти предисловия под одной обложкой, является то, что каждое из них помогает понять другие, так как все они имеют общую математическую структуру. Фримен Дайсон дал однажды очень красноречивое резюме этой моей темы.

«Фрактал — это слово, изобретенное Мандельбротом для того, чтобы объединить под одним заголовком обширный класс объектов, которые [сыграли]... историческую роль... в развитии чистой математики. Классическую математику XIX в. от современной математики века XX отделяет великая революция идей. Корни классической математики лежат среди правильных геометрических структур Евклида и поступательной динамики Ньютона. Современная математика начинается с канторо- вой теории множеств и заполняющей пространство кривой Пеано. Исторически революция была вызвана открытием математических структур, не умещавшихся в рамках построений Евклида и Ньютона. Эти новые структуры рассматривались... как «патологические»... как некая «выставка чудовищ», вроде кубистской живописи и атональной музыки, перевернувших примерно в то же время установленные стандарты хорошего вкуса в искусстве. Математики же, сотворившие этих чудовищ, считали их важными свидетельствами того, что мир чистой математики содержит в себе необыкновенное изобилие возможностей, далеко выходящее за рамки тех простых структур, что можно наблюдать в Природе. Математика XX в. расцветала в убежденности, что она уже оставила далеко позади все ограничения, налагаемые на нее ее естественным происхождением.

И тут, как отмечает Мандельброт ... Природа сыграла с математиками шутку. Возможно, математикам XIX в. недоставало воображения — Природа же никогда таким недостатком не страдала. Как оказалось, окружающим нас и хорошо знакомым нам объектам всегда были присущи те самые патологические структуры, которые математики изобрели, чтобы избавиться от уз натурализма XIX в.»1.

Короче говоря, я лишь подтвердил наблюдение Блеза Паскаля, заключающееся в том, что воображение иссякает прежде Природы. («L'imagination se lassera plutot de concevoir que la nature de fournir».)

Тем не менее, фрактальная геометрия не является прямым «приложением» идей, доминирующих в математике XX в. Это — новая отрасль, несколько запоздало родившаяся из кризиса математики, который начался в 1875 г., когда Дюбуа-Реймон впервые сообщил миру о непрерывной недифференцируемой функции, построенной Вейерштрассом ([115], главы 3, 39 и 41). В списке главных действующих лиц кризиса, продолжавшегося приблизительно до 1925 г., отметим такие выдающиеся имена, как Кантор, Пеано, Лебег и Хаусдорф. Этих людей, а вместе с ними и Безиковича, Больцано, Чезаро, Коха, Осгуда, Серпинского и Урысона, вы вряд ли встретите среди авторов эмпирических исследований Природы, однако я заявляю, что влияние трудов этих великих людей оказалось значительно шире рамок их первоначальных замыслов.

Я намерен показать, что за упомянутыми безумными творениями лежат необъятные миры, которых так и не увидели ни их создатели, ни несколько поколений последователей, — миры, которые будут небезынтересны тем, кто воспевает Природу, стремясь ей подражать.

И снова удивляемся мы — хотя некоторые недавние события должны были бы показать нам, что ничего удивительного тут нет — тому, что «применение языка математики к естественным наукам оказывается непостижимо эффективным ..., дар, которого мы настолько же не понимаем, насколько не заслуживаем. Мы должны быть благодарны за этот дар и надеяться, что будущие исследования не только не обесценят его, но и позволят распространить на многие области человеческого знания, будь то на горе или на радость, ко всеобщему удовольствию или, что гораздо более вероятно, к не менее всеобщему недоумению» [598].

МАТЕМАТИКА, ПРИРОДА, ЭСТЕТИКА

Вдобавок ко всему, благодаря фрактальной геометрии мы узнаём о том, что некоторые из наиболее сухих и холодных разделов математики скрывают за внешней суровостью целый мир чистой пластичной красоты, доселе неведомой.

«ФРАКТАЛ» И ПРОЧИЕ НЕОЛОГИЗМЫ

У римлян была поговорка, согласно которой «назвать — значит узнать»: Nomen est питеп. До того, как я принялся за изучение упомянутых в предыдущих разделах множеств, они были не настолько важны, чтобы требовать для себя особого термина. Однако по мере того, как, благодаря моим усилиям, теряли свои клыки и покорялись классические чудовища, и поднимали головы новые монстры, все более очевидной становилась необходимость как-то их всех называть. Особенно остро эта проблема встала передо мной, когда нужно было дать имя первому предшественнику настоящего эссе.

Термин фрактал я образовал от латинского причастия fractus. Соответствующий глагол frangere переводится как ломать, разламывать, т. е. создавать фрагменты неправильной формы. Таким образом, разумно — и как кстати! — будет предположить, что, помимо значения «фрагмен- тированный» (как, например, в словах фракция или рефракция), слово fractus должно иметь и значение «неправильный по форме» — примером сочетания обоих значений может служить слово фрагмент.

Словосочетание фрактальное множество мы впоследствии определим строго, сочетания же естественный или природный фрактал я предполагаю применять более свободно для обозначения естественных структур, которые с той или иной целью могут быть представлены в виде фрактального множества. Например, броуновские кривые являются фрактальными множествами, а броуновское движение мы назовем природным фракталом.

(Так как слово алгебра происходит от арабского jabara («связывать, соединять»), получается, что фракталы и алгебра — этимологически противоположны.)

В своих странствиях по только что открытым или только что заселенным землям я часто испытывал искушение воспользоваться своим правом первооткрывателя и дать имена всем местным достопримечательностям. Вообще, мне кажется, что подходящий неологизм, как правило, удобнее, чем новое значение и без того затертого до дыр термина.

Кроме того, нельзя забывать и о том, что первичное значение слова часто так глубоко впечатано в сознание, что его не сотрешь оттуда никакими переопределениями. Вольтер писал в 1730 г.: «Если бы Ньютон не воспользовался в своих трудах словом притяжение1, [Французская] Академия в полном составе прозрела бы и увидела бы, наконец, свет. К несчастью, произнося это слово в Лондоне, он и не подозревал о том, что в Париже оно ничего, кроме смеха, не вызывает». А что можно сказать о таком вот неуклюжем творении: «распределение вероятностей распределения Шварца в пространстве по отношению к распределению галактик»?

Для того, чтобы избежать этой ловушки, я выбирал при создании новых терминов, в основном, малоиспользуемые латинские и греческие корни (например, трема), и изредка заимствовал из простой и здравой лексики домохозяек, рабочих и фермеров. Дайте чудовищу какое-нибудь уютное, домашнее имя, и вы удивитесь, насколько легче будет его приручить! Специальными терминами стали у меня такие, например, слова, как пыль, творог и сыворотка. Я также готов отстаивать термин пертайлинг1, который мы будем применять для обозначения полного покрытия некоторой площади плотно прилегающими друг к другу самоподобными плитками (как на мостовой).

ИЗЛОЖЕНИЕ ЗАДАЧ (ЗАКЛЮЧЕНИЕ)

Суммируя вышеизложенное, отмечу, что в настоящем эссе описаны предлагаемые мной для множества конкретных задач — некоторые из этих задач имеют весьма почтенный возраст — решения с помощью математики (орудие, конечно, тоже не ново, однако таким образом его еще никто не использовал, если не считать математического аппарата броуновского движения). Случаи, с которыми позволяет справляться такая математика, и расширения, которых эти случаи от нее требуют, составляют основу новой научной дисциплины.

Ученые мужи будут очень удивлены (я в этом уверен) и обрадованы, обнаружив, что отныне и впредь они получают возможность рассматривать со строгих (но справедливых) количественных позиций те формы, которые раньше им приходилось характеризовать различными «ненаучными» словами — такими, например, как ветвистый, водорослеобразный, волнистый, извилистый, клочковатый, промежуточный, прыщавый, пушистый, рябой, сморщенный, спутанный, странный, шероховатый и т. д.

Собственно математики будут удивлены (я надеюсь) и обрадованы и тем, что множества, считавшиеся ранее исключительными [68], становятся в некотором смысле правилом, и тем, что конструкции, полагавшиеся ранее патологическими, естественным образом развиваются из весьма конкретных задач, и тем, что внимательное изучение Природы несомненно разрешит все старые вопросы и предложит взамен множество новых.

И все же в данном эссе я избегал чисто специальных проблем. Оно адресовано прежде всего людям науки вообще, а не только специалистам-математикам. Представление каждой новой темы начинается с конкретных примеров. Читатель самостоятельно и постепенно раскрывает для себя природу фракталов — такой путь представляется мне более результативным, нежели внезапное озарение с подачи автора.

А что касается искусства, то оно ценно само по себе.

2. ИРРЕГУЛЯРНОЕ И ФРАГМЕНТИРОВАННОЕ В ПРИРОДЕ

«Красота всегда относительна... Не следует... полагать, что берега океана и впрямь бесформенны только потому, что их форма отлична от правильной формы построенных нами причалов; форму гор нельзя считать неправильной на основании того, что они не являются правильными конусами или пирамидами; из того, что расстояния между звездами неодинаковы, еще не следует, что их разбросала по небу неумелая рука. Эти неправильности существуют только в нашем воображении, на самом же деле они таковыми не являются и никак не мешают истинным проявлениям жизни на Земле, ни в царстве растений и животных, ни среди людей.» Эти слова английского ученого XVII в. Ричарда Бентли (источник вдохновения для начальных строк настоящего эссе) свидетельствуют о том, что идея объединить формы берегов, гор и небесных объектов и противопоставить их евклидовым построениям возникла в умах людей уже очень давно.


ИЗ-ПОД ПЕРА ЖАНА ПЕРРЕНА

Прислушаемся теперь к голосу, обладатель которого несколько более близок к нам — как по времени, так и по роду занятий. Прежде чем мы приступим к обсуждению неправильности и фрагментированности береговых линий, броуновских траекторий и других рисунков Природы, исследуемых в настоящем эссе, позвольте мне представить на ваш суд несколько цитат из одной статьи Жана Перрена [468] в моем вольном переводе. Последующие работы Перрена, посвященные броуновскому движению, принесли ему Нобелевскую премию и стимулировали развитие теории вероятности. Я же намерен привести здесь некоторые строки из его раннего философского манифеста. Хотя этот текст в несколько измененном виде появился позднее в предисловии к книге «Атомы» [470], заметили его, похоже, только тогда, когда я процитировал его в первом (французском) издании моего эссе. Я слишком поздно обратил внимание на это обстоятельство, чтобы оно как-то существенно повлияло на книгу, однако этот отрывок вдохновлял меня в час нужды, не говоря уже о том, что он являет собой прекрасный образец ораторского искусства.

«Общеизвестно, что хороший учитель, давая ученикам строгое определение непрерывности, покажет прежде, что лежащая в основе

этого понятия идея хорошо им знакома. Он построит на доске какую-нибудь вполне непрерывную кривую и, перемещая вдоль нее линейку, скажет: «Как видите, касательная существует во всех точках кривой». Или, например, для того, чтобы ознакомить учеников с понятием истинной скорости движущегося объекта в некоторой точке его траектории, учитель говорит: «Вы, разумеется, понимаете, что среднее между значениями скорости в двух соседних точках не изменяется сколько-нибудь существенно при приближении этих точек друг к другу на бесконечно малое расстояние». И многие люди, полагая, что для некоторых всем знакомых движений такой взгляд достаточно точно отражает положение вещей, не желают замечать, что все не так просто.

Математики, однако, прекрасно понимают, что попытка показать при помощи построения кривых то, что каждая непрерывная функция имеет производную, по меньшей мере, наивна. Хотя дифференцируемые функции и являются самыми простыми, они все же представляют собой исключение. Говоря языком геометрии, кривые, не имеющие касательных, могут считаться правилом, в то время как правильные кривые — такие, например, как окружность — любопытным, но весьма частным случаем.

Изучение же общего случая представляется, на первый взгляд, остроумным, но совершенно искусственным упражнением для праздного интеллекта — этакое стремление к абсолютной точности, доведенное до абсурда. Те, кто впервые слышит о кривых без касательных или о функциях без производных, часто склонны полагать, что в Природе не существует ни подобных сложных конструкций, ни даже намека на них.

Это, однако, неверно — математики со своей логикой оказываются ближе к реальности, нежели физики с их практическими представлениями. В качестве иллюстрации к этому утверждению взглянем непредвзято на некоторые экспериментальные данные.

Возьмем, например, одну из белых чешуек, которые образуются при добавлении соли в раствор мыла. С некоторого расстояния может показаться, что чешуйка имеет четко очерченный контур, однако при более близком рассмотрении четкость исчезает. Мы больше не можем провести мысленно касательную к любой точке этого контура. Вполне удовлетворительная, на первый взгляд, линия оказывается либо перпендикулярной к границе, либо наклонной. Использование увеличительного стекла или даже микроскопа ничуть не уменьшает неопределенности — при каждом очередном увеличении возникают новые неправильности, и нам никак не удается получить такую же четкую и гладкую границу, как, например, у стального шарика. Таким образом, если считать последний классической иллюстрацией непрерывности, то на примере нашей чешуйки можно сформулировать более общее понятие непрерывной функции, не имеющей производной.»

Прервемся ненадолго, чтобы взглянуть на рисунки 25 и 26.

Здесь и далее черно-белые иллюстрации приводятся сразу же после соответствующей главы и нумеруются номерами страниц, на которых они расположены. Цветные иллюстрации собраны в отдельной вклейке, причем пояснения к этим иллюстрациям не связаны непосредственно с остальным содержанием книги.

Продолжим цитату.

«Не следует забывать о том, что данная неопределенность положения касательной в некоторой точке контура ни в коей мере не то же самое, что и неопределенность, наблюдаемая, скажем, на карте побережья Бретани. Хотя карта также будет изменяться в зависимости от масштаба, мы всегда сможем найти касательную, так как карта — это всего лишь условный рисунок. Напротив, существенным свойством нашей чешуйки, равно как и самого побережья, является следующее: можно только предполагать — так как увидеть этого мы не в состоянии, — что их границы в любом масштабе включают в себя такие детали, которые полностью исключают возможность существования какой-либо определенной касательной.

Не покидая экспериментально подтверждаемой реальности, мы наблюдаем под микроскопом проявление броуновского движения на примере малой частицы, взвешенной в толще жидкости (см. рис. 29). Мы видим, что направление прямой, соединяющей точки, соответствующие двум очень близким во времени положениям частицы, изменяется по мере уменьшения временного промежутка между двумя измерениями совершенно беспорядочно. Беспристрастный наблюдатель заключит из этого, что он имеет дело с функцией, не имеющей производной, а вовсе не с кривой, к которой в любой ее точке можно провести касательную.

Хотя близкое рассмотрение любого объекта ведет в общем случае к обнаружению его в высшей степени неправильной структуры, не следует забывать и о том, что можно весьма достоверно оценить его свойства с помощью непрерывных функций. Древесина бесконечно пориста, однако нам удобнее считать, что поверхность отпиленного и обструганного деревянного бруска имеет конечную площадь. Иными словами, в определенном масштабе и при определенных методах исследования можно полагать, что многие феномены представимы в виде правильных непрерывных функций — так, оборачивая кусок губки фольгой, вовсе не обязательно точно следовать всем изгибам сложной поверхности губки.

Более того, если мы считаем, что материя обладает бесконечно зернистой структурой — а это вполне в духе атомной теории, — то возможность применять к реальности строгое математическое понятие непрерывности сводится почти на нет.

Рассмотрим, например, способ, с помощью которого мы определяем плотность воздуха в заданной точке в заданный момент времени.

Мы мысленно рисуем сферу объема v с центром в упомянутой точке, содержащую массу воздуха то. Отношение m/v определяет среднюю плотность воздуха внутри сферы, истинной же плотностью мы считаем некоторое предельное значение этого отношения. Это понятие, однако, предполагает, что средняя плотность для сфер, меньших некоторого объема, практически постоянна. Средняя плотность воздуха в сфере объемом 1000м3может значительно отличаться от плотности в сфере объемом 1см3, но для сфер объемом в 1см3 и 0,001мм3 ожидаемая разница составит величину лишь порядка К)

Предположим, что объем постепенно уменьшается. Вместо того, чтобы уменьшаться вместе с ним, флуктуации только растут. Для масштабов, при которых наблюдается броуновское движение, флуктуации достигают уже 10−3, а когда радиус нашей гипотетической сферы достигает сотых долей микрона, порядок флуктуаций возрастает до 0,2.

Еще немного, и радиус малой сферы достигает размеров молекулярного порядка. Будучи помещена внутрь области, заполненной газом, такая сфера, в общем случае, оказывается в межмолекулярном пространстве, где средняя плотность по определению обращается в нуль. Истинная плотность в данной точке также обращается в нуль. Но приблизительно в одном случае из тысячи точка окажется внутри молекулы, и средняя плотность в ней будет в тысячи раз больше, чем то значение, которое мы обычно считаем истинной плотностью газа.

Предположим, что радиус сферы продолжает постепенно уменьшаться. Вскоре, если не возникнет никаких исключительных обстоятельств, сфера совершенно опустеет и далее будет оставаться пустой, поскольку пусто межатомное пространство. Истинная плотность обращается в нуль почти везде — за исключением бесконечного множества изолированных точек, где она бесконечно возрастает.

Похожие соображения можно применить и к другим физическим свойствам — таким, например, как скорость, давление или температура. Вглядываясь в нарисованную нами неизбежно несовершенную картину Вселенной при все возрастающем увеличении, мы видим, что поведение этих свойств становится все более нерегулярным. Функция, описывающая любое физическое свойство, образует в межматериальном пространстве континуум, состоящий из бесконечного количества сингулярных точек.

Пример бесконечно разрывной материи — непрерывный эфир с вкраплениями крошечных звезд — являет нам космическая Вселенная. Разумеется, все те заключения, к которым мы пришли выше, могли бы быть достигнуты с помощью воображаемой сферы, с легкостью вмещающей в себя планеты, солнечные системы, звезды и туманности...

Позволим себе высказать одно предположение, достаточно произвольное, но непротиворечивое. Наверняка мы вскоре столкнемся с такими случаями, для описания которых окажется проще использовать недифференцируемые функции, нежели те, что имеют производную. Когда такое произойдет, практическая ценность математических исследований иррегулярных континуумов станет очевидной всем».

И далее, подчеркивая мысль, с новой строки:

«Однако это — всего лишь мечтания. Пока».

КОГДА «ВЫСТАВКА ЧУДОВИЩ» СТАНОВИТСЯ МУЗЕЕМ НАУКИ

Часть из тех мечтаний, относящаяся к броуновскому движению, и впрямь воплотилась в реальности еще при жизни Перрена. Случилось так, что его статья [469] привлекла внимание Норберта Винера, причем восторженный и удивленный Винер тут же решил должным образом исследовать и строго определить недифференцируемую первую модель броуновского движения ([595], с. 38-39 или [596], с. 2-3).

Эта модель до сих пор сохраняет свое значение, хотя физики и указывают на то, что ее недифференцируемость проистекает из злостной идеализации, а именно — из пренебрежения инерцией. Поступая так, физики поворачиваются спиной к наиболее существенному для данного труда свойству модели Винера.

Что касается других предсказываемых Перреном применений математических исследований в физике, то до сегодняшнего дня никто даже не пытался этим заниматься. Собрание множеств, о которых упоминал Перрен (кривые Вейерштрасса, канторова пыль и подобные им), до сих пор остается предметом изучения «чистой математики».

Некоторые авторы (например, Виленкин [573]) называют это собрание «Музеем математических искусств», не подозревая (я уверен), насколько точно и полно доказываются эти слова в данном эссе. Из первой главы мы помним, что кое-кто (начиная еще с Анри Пуанкаре) предпочитает использовать для упомянутого собрания словосочетание «Выставка чудовищ» — подобно Джону Валлису с его «Трактатом об алгебре» (1685), где четвертое измерение было описано как «чудовище в Природе, не более возможное, чем химера либо кентавр».

Одна из задач настоящего эссе состоит в том, чтобы посредством беспристрастного рассмотрения всевозможных явных «случаев» показать читателю, что та же самая «Выставка» с полным правом может называться «Музеем науки».

Можно только похвалить математиков за то, что они в столь давние времена додумались до первых из упомянутых множеств; однако то, что те же математики так долго отпугивали нас от этих множеств, достойно всяческого осуждения.

В процитированных во второй главе вдохновенных словах Жана Перрена описывается форма «белых чешуек, которые образуются при добавлении соли в раствор мыла». Помещенные здесь рисунки иллюстрируют замечания Перрена.

Спешу заверить вас, что эти иллюстрации не являются ни фотографиями, ни смоделированными с помощью компьютера изображениями каких бы то ни было реальных объектов, будь то чешуйки мыла, дождевые облака, тучи вулканического пепла, астероиды или медные самородки.

Они также не претендуют на то, чтобы считаться продуктом теории, описывающей различные аспекты образования реальных чешуек — химические, физико-химические и гидродинамические.

Более того, они вообще не имеют никакого отношения к каким бы то ни было научным принципам. Это — полученные с помощью компьютера изображения, призванные по возможности наглядно проиллюстрировать некоторые геометрические характеристики, которые, как мне показалось, присутствуют в описании Перрена, и которые я смоделировал, используя понятие фрактала.

Рис. 25 и 26. ИСКУССТВЕННЫЕ ФРАКТАЛЬНЫЕ ЧЕШУЙКИ


Эти чешуйки существуют только в памяти компьютера. Насколько мне известно, никто и никогда не создавал их реальных моделей. Затенение также считал компьютер.

Построение таких чешуек описывается в главе 30. Видимые невооруженным глазом различия между ними объясняются разными значениями параметра D, которые указаны над рисунками. Этот параметр, называемый фрактальной размерностью и являющийся ключевым понятием настоящего труда, вводится в главе 3. Похожесть общих очертаний фигур во всех трех случаях объясняются смещением, которое является результатом аппроксимации и обсуждается в пояснении к рис. 372 и 373.

Более ранняя версия этих иллюстраций странно напоминала якобы фотографию лохнесского чудовища. Можно ли считать подобное сходство случайным совпадением?

В статье [469] физическое броуновское движение описывается следующим образом: «Все части находящейся в состоянии равновесия жидкой массы (такой, например, как вода в стакане), представляются нам совершенно неподвижными. Если поместить в нее объект с большей плотностью, то он опустится вниз. Скорость этого падения, разумеется, будет тем меньше, чем меньше объект, и все же в конце концов любой видимый объект опускается на дно сосуда и не проявляет стремления вновь подняться на поверхность. Однако, наблюдая за взвесью в жидкости очень мелких частиц, нетрудно заметить, что их движение абсолютно беспорядочно. Они движутся, останавливаются, снова начинают движение, взбираются вверх, опускаются, снова поднимаются и совершенно не желают оставаться неподвижными».

В качестве иллюстрации приводится один из многих изображающих этот естественный феномен рисунков из книги Перрена «Атомы» [470]. На нем изображены четыре индивидуальные траектории движения коллоидной частицы радиуса 0,53μ, полученные с помощью микроскопа. Через каждые 30 секунд на координатной сетке отмечались последовательные положения частицы (шаг сетки 3,2μ), которые соединялись затем прямыми (эти прямые, таким образом, не имеют никакого физического смысла).

Продолжим наш вольный перевод из Перрена [469]. «Может возникнуть искушение определить «среднюю скорость частицы», как можно точнее последовав за ней по ее извилистому пути. Однако подобная оценка окажется в корне неверной. И величина, и направление видимой средней скорости частицы изменяются самым безумным образом. Рисунок дает лишь слабое представление об изумительной запутанности реальной траектории. Если бы положения частицы регистрировались в 100 раз чаще, то вместо каждого отрезка прямой мы получили бы ломаную, столь же сложную как и исходный рисунок, хотя и меньших размеров — и так далее. Нетрудно убедиться, что на практике понятие касательной в применении к таким кривым является полной бессмыслицей».

Автор настоящего эссе разделяет мнение Перрена, однако рассматривает неправильность под несколько иным углом. Мы подчеркиваем тот факт, что при последовательном увеличении разрешения микроскопа, длина траектории наблюдаемого броуновского движения возрастает до бесконечности (см. главу 25).

Кроме того, след, оставляемый броуновской частицей, в конце концов почти заполняет всю плоскость. Разве не напрашивается вывод, что в каком-то смысле (смысл этот нам еще предстоит отыскать) размерность этой необычной кривой должна совпадать с размерностью плоскости? Самое интересное — так оно и есть. Одна из главных задач этой книги заключается в том, чтобы показать, как расплывчатое понятие размерности расщепляется на несколько вполне определенных составляющих. Топологически след движения броуновской частицы является кривой (размерность 1). Однако так как он способен заполнить практически всю плоскость, то во фрактальном смысле его размерность равна 2. Расхождение между этими двумя величинами дает броуновскому движению право называться, согласно вводимой ниже терминологии, фракталом.

Рис. 29. ФИЗИЧЕСКОЕ БРОУНОВСКОЕ ДВИЖЕНИЕ. КЛАССИЧЕСКИЕ ЗАРИСОВКИ ЖАНА ПЕРРЕНА

3 РАЗМЕРНОСТЬ, СИММЕТРИЯ, РАСХОДИМОСТЬ

Центральную роль в этой книге играют древние понятия размерности (т. е. количества пространственных измерений или степени многомерности) и симметрии. Кроме того, позже мы неоднократно столкнемся с различными симптомами расходимости.

ИДЕЯ РАЗМЕРНОСТИ

Во время кризиса 1875-1925 гг. математики осознали, что невозможно достичь истинного понимания неправильности и фрагментации (равно как правильности и связности), по-прежнему определяя размерность как число пространственных координат. Первый шаг в направлении строгого анализа был сделан Кантором в его письме к Дедекинду от 20 июня 1877 г., следующий — Пеано в 1890 г., а к середине 20-х гг. XX в. процесс благополучно завершился.

Как случается со всеми значительными интеллектуальными достижениями, результат этого процесса может иметь весьма различные интерпретации. Во всех попадавших мне на глаза математических исследованиях теории размерности подразумевается, что теория эта единственна и неповторима. Главным здесь, на мой взгляд, является то, что довольно расплывчатое понятие размерности, судя по всему, имеет много математических аспектов, которые не только принципиально различны, но еще и дают различные числовые значения этой самой размерности. То, что Уильям из Оккама говорил о сущностях, относится и к размерностям — не следует множить размерности без необходимости, однако от множественности размерностей нам никуда не деться. Евклид в свое время ограничился множествами, все существенные размерности которых совпадают — эти множества можно назвать размерностно-согласованными множествами. С другой стороны, различные размерности множеств, которым посвящена значительная часть этой книги, отказываются совпадать, т. е. эти множества размерностно-несогласованы.

Переходя от размерностей математических множеств к «эффективным» размерностям моделируемых этими множествами физических объектов, мы встречаемся с другой двусмысленностью, неизбежной и реально необходимой. И математические, и физические аспекты понятия размерности вкратце предваряются в данной главе.

ОПРЕДЕЛЕНИЕ ТЕРМИНА «ФРАКТАЛЬНЫЙ»

В нижеследующем тексте используются не определенные ранее математические термины, однако многие читатели, возможно, сочтут этот отрывок полезным для себя или хотя бы просто занимательным. Остальные же вольны его пропустить.

Это и последующие отступления от основной линии настоящего эссе я буду помечать особыми скобками — < и >. Последний символ намеренно сделан более заметным, чтобы любой затерявшийся в отступлениях и желающий двигаться дальше читатель мог с легкостью его найти. Открывающая скобка не столь привлекает внимание: мне не хотелось, чтобы отступления слишком сильно выделялись в тексте. В отступлениях часто можно встретить предварительное упоминание материала, обсуждаемого в последующих главах.

< Размерностную несогласованность основных фракталов можно использовать для трансформации интуитивного понятия фрактала в строго математическое. Я решил сосредоточиться на двух определениях, каждое из которых ставит в соответствие всякому множеству в евклидовом пространстве — каким бы «патологическим» оно ни выглядело — некое вещественное число, которое и с интуитивной, и с формальной точки зрения имеет полное право называться размерностью этого множества. Более неформальным из двух является определение топологической размерности по Брауэру, Лебегу, Менгеру и Урысону. Эта размерность описана в соответствующем разделе главы 41. Обозначим ее через DT Определение второй размерности было сформулировано Хаусдорфом в [203] и приведено в окончательный вид Безиковичем. Ее описание можно найти в главе 39, а обозначать ее мы будем через D.

< В евклидовом пространстве RE величины размерностей DT и D заключены в промежутке от 0 до E. Однако на этом их сходство заканчивается. Размерность DT всегда является целым числом, в то время как для размерности D это вовсе не обязательно. Эти две размерности не обязательно должны совпадать, они должны лишь удовлетворять неравенству Спилрайна (см. [231], глава 4)

D≤DT

В случае евклидовых множеств D=DT. Однако почти для всех множеств в этой книге D>DT. Такие множества необходимо было как-то называть, поэтому я придумал термин фрактал, определив его следующим образом:

< Фракталом называется множество, размерность Хаусдор- фа-Безиковича для которого строго больше его топологической размерности.


< Любое множество с нецелым значением D является фракталом. Например, исходное канторово множество представляет собой фрактал, поскольку, как мы увидим в главе 8, его размерность

D=ln2/ln3≈0,6309>0, при DT=0.

Канторово множество в пространстве RE можно обобщить так, чтобы DT=0, a D принимала бы любые желаемые значения в промежутке от 0 до E (включительно).

< Фракталом является и исходная кривая Коха, поскольку, как будет показано в главе 6, ее размерность

D=ln4/ln3≈1,2618>1, при DT=1.

< Фрактал может иметь и целочисленную размерность. Например, в главе 25 показано, что траектория броуновского движения представляет собой фрактал, так как ее размерность

D=2, при DT=1.

< Тот поразительный факт, что размерность D не должна непременно быть целым числом, заслуживает некоторого терминологического отступления. Если понимать термин «дробь»1 в широком смысле, т.е. как синоним термина «нецелое вещественное число», то некоторые из вышеперечисленных значений размерности D являются дробными — размерность Хаусдорфа-Безиковича иногда даже называют дробной размерностью. Однако учитывая, что D может принимать и целые значения (меньшие, чем E, но строго большие, чем DT), я предпочитаю называть величину D фрактальной размерностью. ►

ФРАКТАЛЫ В ГАРМОНИЧЕСКОМ АНАЛИЗЕ

< Исследование фракталов частично затрагивает и геометрический аспект гармонического анализа, однако в настоящем труде этот факт не слишком подчеркивается. Большинству читателей гармонический анализ (иначе называемый спектральным или анализом Фурье) мало известен, а многие из тех, кто эффективно используют его на практике, мало знакомы с его фундаментальными структурами.

Кроме того, каждый из этих подходов — и фрактальный, и спектральный — имеет свои характерные особенности и свою прелесть, которые лучше постигать на своем собственном опыте. И наконец, на мой взгляд, по сравнению с гармоническим анализом фракталы просты и интуитивно понятны. ►

О «ПОНЯТИЯХ, КОТОРЫЕ ... НОВЫ, НО ... »

В свое время Лебег немало потешался над некоторыми «понятиями, которые, безусловно, новы, но абсолютно бесполезны». К размерности D эту характеристику никто не применял, однако ее использование было ограничено весьма узким кругом областей, причем все эти области относились к чистой математике. Я, пожалуй, был первым, кто успешно применил размерность D к описанию Природы. Одной из важнейших целей моей работы является закрепление за размерностью D центрального места в эмпирической науке и демонстрация таким образом того, что размерность эта обладает гораздо более широкой применимостью, чем кто-либо может себе представить.

В некоторых областях физики мое утверждение о важности размерности D было принято с исключительной готовностью. Более того, многие ученые, работающие в этих областях, сознавая неадекватность обычной размерности, уже пытались вести поиски в этом направлении, получая в результате всевозможные дробные, аномальные, либо непрерывные размерности. К сожалению, эти поиски никак не были связаны друг с другом. К тому же в некоторых случаях различные размерности определялись одинаково, ни одна из них не могла похвастать наличием математического теоретического обоснования, и ни одна не была должным образом разработана, так как из-за отсутствия математического обоснования эти размерности невозможно было отличить друг от друга. Для тех разработок, которые будут описаны ниже, существование математической теории жизненно необходимо.

МАТЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ ФОРМЫ - ЭТО НЕ ТОЛЬКО ТОПОЛОГИЯ

Если вы спросите у математика, какая четко определенная область математики имеет дело с формами, он почти наверняка упомянет топологию. Топология, безусловно, имеет к нашим целям самое непосредственное отношение — мы даже упоминали о ней в предыдущей главе, — однако в настоящем эссе выдвигается и защищается утверждение, что довольно расплывчатое понятие формы содержит не только топологические, но и другие математические аспекты.

Топология, которую раньше называли геометрией местоположений или analysis situs1 (греческое слово переводится как «место» или «положение»), полагает, что все горшки с двумя ручками имеют одинаковую форму, так как если бы они обладали неограниченной гибкостью и сжимаемостью, то можно было бы из одного горшка вылепить любой другой, причем непрерывным образом, не делая никаких новых отверстий и не закрывая старых. Топология также учит, что форма береговой линии любого острова идентична форме береговой линии любого другого острова, поскольку все такие линии топологически идентичны дружности. Топологическая размерность береговой линии равна топо- логической размерности окружности, и обе они равны 1. Если добавить острову несколько не соприкасающихся с ним «спутников», то совокупная береговая линия получившегося архипелага будет топологически идентична совокупности нескольких окружностей. Таким образом, топология не видит разницы между различными береговыми линиями.

В главе 5 показано, что различные береговые линии имеют, как правило, различные фрактальные размерности. Различия между фрактальными размерностями обусловлены различиями между нетопологическими аспектами формы, которые я предлагаю назвать фрактальными.

Большинство действительно важных и интересных задач сложным образом сочетают в себе фрактальный и топологический аспекты формы.

Заметим, что в топологии определения собственно поля и размерности DT развивались параллельно, а понятие фрактальной размерности D появилось на полвека раньше настоящего исследования в области фрактальных форм.

Кстати, из-за того, что некий класс топологических пространств носит имя Феликса Хаусдорфа, широко используемый для обозначения размерности D термин «хаусдорфова размерность» может быть воспринят как сокращение от «размерности хаусдорфова пространства», создавая тем самым впечатление, что D является топологическим понятием — это абсолютно не так. Вот вам еще одна причина, почему я предпочитаю термин фрактальная размерность.

ЭФФЕКТИВНАЯ РАЗМЕРНОСТЬ

Помимо математических идей, лежащих в основе размерностей DT и D, я часто прибегаю к помощи эффективной размерности — понятия, которому не следует давать точного определения. Это мощное интуитивное понятие представляет собой возврат к древнегреческой пифагорейской геометрии. Новизна заключается в том, что в настоящем эссе значение эффективной размерности может быть дробным.

Эффективная размерность выражает соотношение между математическими множествами и естественными объектами. Строго говоря, все физические объекты — такие, например, как вуаль, нить или маленький шарик — должны быть представлены трехмерными телами. Однако физики предпочитают считать, что вуаль имеет размерность 2, а размерности нити и шарика равны соответственно 1 и 0 (при условии, разумеется, что и вуаль, и нить, и шарик достаточно малы). Например, для описания нити относящиеся к множествам с размерностями 1 или 3 теории должны быть соответствующим образом скорректированы с помощью поправочных членов. После этого строится более точная геометричеcкая модель, требующая меньших поправок. Если повезет, такая модель оказывается верной даже без учета поправок. Иными словами, эффективная размерность неизбежно опирается на субъективный фундамент; она обусловлена приближением и, как следствие, степенью разрешения.

ЭФФЕКТИВНЫЕ РАЗМЕРНОСТИ, СКРЫТЫЕ В СКРУЧЕННОМ ИЗ НИТИ ШАРЕ

Для подтверждения последнего заявления скрутим из толстой нити диаметром 1 мм шар диаметром 10 см и рассмотрим скрытые в таком клубке эффективные размерности.

Удаленному наблюдателю наш клубок покажется фигурой с нулевой размерностью, т. е. точкой. (Да что там клубок! — еще Блез Паскаль и средневековые философы утверждали, что в космическом масштабе весь наш мир есть не более, чем точка!) С расстояния в 10 см шар из нитей выглядит как трехмерное тело, а с расстояния в 10 мм — как беспорядочное переплетение одномерных нитей. На расстоянии в 0,1 мм каждая нить превратится в толстую колонну, а вся структура целиком опять станет трехмерным телом. На расстоянии 0, 01 мм колонны превратятся в переплетение волокон — шар снова станет одномерным. При дальнейшем приближении процесс становится периодическим — размерность наблюдаемой фигуры переключается с одного значения на другое и наоборот. Наконец, когда клубок превратится в скопление, состоящее из какого-то конечного числа точек, имеющих размеры порядка атомных, его размерность снова становится равной нулю. Похожую последовательность смены размерностей можно наблюдать при разглядывании листа бумаги.

Тот факт, что численный результат может и должен зависеть от соотношений между объектом и наблюдателем, не только вполне в духе сегодняшней физики, но и являет собой достойный подражания пример.

Большинство объектов, рассматриваемых в этой книге, похожи на наш нитяной клубок: они демонстрируют целую последовательность различных эффективных размерностей. Однако существует одно важное отличие: некоторые недостаточно определенные переходы между зонами с отчетливо выраженной размерностью интерпретируются здесь как фрактальные зоны, внутри которых D>DT.

ПРОСТРАНСТВЕННАЯ ОДНОРОДНОСТЬ, МАСШТАБНАЯ ИНВАРИАНТНОСТЬ И САМОПОДОБИЕ

Оставим пока размерности в покое и приготовимся к разговору о симметрии, для чего вспомним о простейших формах, с которых начинается евклидова геометрия: о линиях, плоскостях и пространствах. И о простейших физических задачах, возникающих при однородном распределении какой-либо физической величины — плотности, температуры, давления или скорости.

Однородное распределение вдоль линии, на плоскости или в пространстве обладает двумя очень привлекательными свойствами. Оно инвариантно при смещении и при изменении масштаба. При переходе к фракталам обе инвариантности неизбежно подвергаются модификации и/или/ ограничению области их действия. Следовательно, наилучшими можно считать те фракталы, которые демонстрируют максимальную инвариантность.

В случае смещения различные участки траектории броуновского движения частицы не могут быть точно совмещены друг с другом, как, например, могут быть совмещены различные участки прямой линии. Тем нe менее, можно считать, что эти участки совместимы в статистическом смысле. Почти все фракталы, представленные в этой книге, в той или иной степени инвариантны при смещении.

Более того, большинство этих фракталов инвариантны при некоторых преобразованиях масштаба. Назовем их масштабно-инвариантными фракталами. Фрактал, инвариантный при обычном геометрическом преобразовании подобия, называется самоподобным.

В составном термине масштабно-инвариантные фракталы прилагательное служит для смягчения существительного. Основной термин фрактал подразумевает неупорядоченность и относится к структурам ярко выраженной иррегулярности, тогда как определение масштабно-инвариантный намекает на некоторый порядок. Если же под основным термином понимать масштабную инвариантность, предполагающую строгий порядок, то фрактал сыграет роль модификатора, призванного исключить всякий намек на прямые и плоскости.

Не следует превратно понимать стремление допустить однородность и масштабную инвариантность. Как и в случае обыкновенной геометрии природы, все мы прекрасно осведомлены о том, что ничто в окружающем нас мире не является ни строго однородным, ни масштабно-инвариантным. Обыкновенная геометрия рассматривает прямые как предварительные модели. Так же и в механике понятие однородного прямолинейного движения является лишь первым шагом.

Те же соображения применимы и к изучению масштабно-инвариантных фракталов, однако в этом случае первый шаг получается значительно более длинным, поскольку вместо прямых линий мы имеем огромное множество самых разнообразных возможностей, лишь самые яркие примеры которых вошли в эту книгу. Не следует удивляться тому, что масштабно-инвариантные фракталы используются здесь лишь как источники первых приближений к естественным структурам, подлежащим рассмотрению. Скорее, удивиться нужно тому, насколько поразительно верными оказываются эти первые приближения.

Нелишним будет напомнить, что идея самоподобия далеко не нова.. В случае с прямыми эта идея пришла в голову еще Лейбницу примерно в 1700 г. (см. раздел МАСШТАБНАЯ ИНВАРИАНТНОСТЬ ПО ЛЕЙБНИЦУ И ЛАПЛАСУ в главе 41). Ее математическому обобщению, не ограничивающемуся прямыми и плоскостями, скоро исполнится сто лет, хотя реальной его важности до настоящего эссе никто не признавал. Физики тоже давно знакомы с самоподобием — с тех пор, как в 1926 г. Льюис Ф. Ричардсон предположил, что турбулентность в широком диапазоне масштабов может быть разбита на самоподобные завихрения. Поразительные аналитические следствия этой идеи в приложении к механике были сформулированы Колмогоровым в работе [276]. Что касается масштабной инвариантности, то ее аналитические аспекты связываются в физике с понятием ренорм-групп (см. главу 36).

И все же впервые геометрические аспекты нестандартной масштабной инвариантности в Природе были должным образом освещены лишь в первом издании настоящего эссе в 1975 г.

«СИММЕТРИИ» ЗА ПРЕДЕЛАМИ МАСШТАБНОЙ ИНВАРИАНТНОСТИ

Покончив с прямыми, евклидова геометрия берется за фигуры, обладающие более богатыми в смысле инвариантности свойствами, обычно называемыми «симметриями». Мы с вами также не преминем отправиться на довольно продолжительную экскурсию в царство неинвариантных фракталов (в главах 15-20).

Самоотображающиеся, но масштабно-неинвариантные фракталы тесно связаны с некоторыми из наиболее тонких и сложных мест «строго классического» математического анализа. Опровергая распространенное мнение о сухости анализа, эти фракталы удивительно прекрасны.

СИНДРОМ РАСХОДИМОСТИ

Почти все подлежащие далее рассмотрению прецеденты демонстрируют проявления синдрома расходимости. Иными словами, некоторая величина — по всем предположениям, положительная и конечная — оказывается вдруг бесконечной либо вовсе обращается в нуль. На первый взгляд, такое недостойное поведение кажется в высшей степени странным и даже пугающим, однако тщательное исследование показывает, что оно вполне объяснимо, если ... если, конечно, вы готовы начать мыслить по-новому.

Прецеденты, в которых симметрия сопровождается расходимостью, также давно известны специалистам по квантовой физике, в которой вообще большим почетом пользуются всевозможные аргументы, устраняющие расходимость. К счастью для нас, с фрактальными расходимостями справиться гораздо проще.

4 ВАРИАЦИИ НА ТЕМУ

Обозначив в общих чертах все разнообразные задачи настоящего эссе, рассмотрим способы, с помощью которых эти задачи решаются. Здесь можно выделить несколько ярко выраженных граней.

НЕЯСНОСТЬ ИЗЛОЖЕНИЯ - НЕ ДОБРОДЕТЕЛЬ

Для того, чтобы книга оказалась доступной для ученых и студентов, вовсе не обязательно являющихся специалистами во всех затрагиваемых здесь областях знания (многие из которых, надо признать, весьма эзотеричны), я стремился сделать изложение как можно более ясным.

Однако ясность изложения не является главной целью этой книги.

Кроме того, мне не хотелось отпугнуть тех людей, кому, возможно, не слишком важна математическая точность, но наверняка интересны мои основные выводы. Вам встретятся в книге и строгие математические обоснования моих слов (более здравые, между прочим, чем у многих физиков), однако общий стиль выдержан в неформальном (хотя и точном) ключе. Большая часть математических подробностей отнесена в главу 39 — там можно навести необходимые справки и вдохновиться на создание собственных трудов.

Поскольку для оригинального исследования такие вещи, как правило, не характерны, настоящее эссе можно считать до некоторой степени популяризаторским.

Однако популяризация не является его главной целью.

ЭРУДИЦИЯ ПОЛЕЗНА ДЛЯ ДУШИ

На примере главы 2 можно видеть, что в книге имеется довольно большое количество ссылок на труды старых и малоизвестных авторов. Большая часть этих работ привлекла мое внимание уже значительно позже того, как я завершил свои собственные исследования в родственных областях, и они никак не повлияли ни на процесс, ни на выводы. Однако после всех тех долгих лет, на протяжении которых никто не разделял моих интересов, я был счастлив обнаружить в старых книгах схожие с моими соображения, пусть высказанные мельком и не возымевшие видимых последствий. Так у меня возник и окреп интерес к «классике», хотя в обычных обстоятельствах он, как правило, не выдерживает испытания рутинной научной практикой.

Иными словами, мне было радостно сознавать, что среди необходимых мне как архитектору и строителю теории фракталов камней есть немало таких, которых касались руки других подобных мне строителей. Однако есть ли смысл вспоминать об этом сегодня? Современная традиция вполне удовлетворилась бы краткими постраничными сносками, а если мне вдруг взбредет в голову подробно распространяться о дальних предках и длинных родословных моих идей, не рискую ли я создать у читателя абсурдное ощущение того, что построенный мною архитектурный шедевр представляет собой лишь груду древних камней, облепленных новыми ярлыками?

Очевидно, моя страсть к древностям нуждается в каком-нибудь оправдании, но я не стану оправдываться. Скажу лишь, что, на мой взгляд, интерес к истории идей полезен для души ученого.

Однако всякий раз, когда мы взираем на труды великих людей с высоты тех знаний, которыми они не обладали, уместно будет поразмыслить над замечательным предисловием, которое написал Лебег к одной из книг Лузина. В ответ на то, что автор упомянутой книги приписывал Лебегу всевозможные глубокие мысли, французский математик заявил, что он, безусловно, мог бы — или даже должен был бы — подумать об этом, однако не подумал, а посему автором этих мыслей следует все же считать Лузина. Аналогичный феномен можно наблюдать в книге Уиттекера [591]: автор заявляет, что физическая теория относительности была создана не Эйнштейном, а Пуанкаре и Лоренцем, и приводит в подтверждение цитаты из их трудов; при этом известно, что и Пуанкаре, и Лоренц подчеркнуто отрицали свою к этому причастность.

Кроме того, на каждого ученого, когда-то в прошлом высказавшего мимоходом некую идею, из которой мы можем сегодня получить рабочую теорию, найдется, по меньшей мере, еще один ученый, его современник, который уверенно заявлял, что упомянутая идея совершенно абсурдна. Стоит ли ставить в заслугу Анри Пуанкаре те идеи, которые он в молодости не удосужился разработать, а в зрелом возрасте и вовсе отверг? Если верить Стенту [540], то незрелые идеи, высказанные слишком рано, не заслуживают ничего большего, нежели сострадательное забвение.

Хотя избыточная эрудиция в отношении истории идей сама по себе, как оказывается, довольно бесполезна, мне все же хотелось как-то зафиксировать эти отголоски прошлого, что я и сделал в биографических и исторических очерках в главах 40 и 41.

Однако демонстрация эрудиции автора никоим образом не является главной целью этой книги.

«ВИЖУ - ЗНАЧИТ ВЕРЮ»

В своем письме к Дедекинду, написанном в самом начале кризиса математики 1875 - 1925 гг., Кантор, ошеломленный своими поразительными находками, восклицает, переходя при этом с немецкого на французский, что он не может поверить в то, что он видит («Je le vois, mais je ne le crois pas!»1) И математика, словно бы поняв намек с полуслова, принимается усердно избегать обманчивых и искусительных ликов чудовищ. Какой контраст между безудержной вычурностью до- и контрреволюционной геометрии и практически полным отсутствием какого бы то ни было визуального сопровождения в работах Вейерштрасса, Кантора и Пеано! Аналогичный оборот приняли дела и в физике — после того, как в 1800 г. вышла в свет «Небесная механика» Лапласа без единой иллюстрации. Как выразился П. А. М. Дирак в предисловии к изданной в 1930 г. «Квантовой механике», «фундаментальные законы природы управляют мирозданием не так непосредственно, как мы себе это воображаем; они воздействуют на некий субстрат, о котором мы не можем создать для себя никакого представления, не исказив всей картины привнесением в нее наших собственных неуместных добавлений».

Широкое и некритичное приятие таких взглядов принесло в конечном счете немало неприятностей. Теория фракталов, как никакая другая, требует обратного подхода: «Вижу — значит верю.» Поэтому, прежде чем вы продолжите чтение, еще раз рекомендую некоторое время по- разглядывать иллюстрации, особенно те, что вошли в цветную «книгу в книге». Я строил свое эссе таким образом, чтобы его содержимое оказалось доступным (пусть и в различной степени) самому широкому кругу читателей; кроме того, в нем я пытаюсь убедить даже самых отъявленных пуристов от математики в том, что качественные иллюстрации не только помогают разобраться в уже известных понятиях, но и незаменимы при поиске новых концепций и создании новых теорий. Не так уж часто встретишь в современной научной литературе подобную веру в полезность графики.

Однако демонстрация красивых картинок не является главной целью этой книги; иллюстрации — это чрезвычайно полезный инструмент, но и только.

Следует также помнить о том, что любая попытка проиллюстрировать геометрию заведомо обречена на провал. Например, прямая обладает бесконечной длиной и гладкостью, а также бесконечно малой толщиной — в то время как любое изображение этой прямой имеет конечную длину, положительную толщину и неровные края. Тем не менее, многие считают, что созерцание грубого подобия прямой весьма полезно (некоторые даже полагают, что совершенно необходимо) для развития интуиции и облегчает нахождение решений и доказательств. Заметим, что грубое изображение прямой представляет собой более адекватную геометрическую модель, скажем, нити, чем сама идеальная математическая прямая. Иными словами, для практического использования вполне достаточно, чтобы и геометрическая концепция, и ее изображение были заключены между некоторыми определенными значениями характеристических размеров — большим, но конечным (внешний порог), и меньшим, но положительным (внутренний порог).

Сегодня, благодаря возможности строить изображения с помощью компьютера, такие грубые изображения приобрели практическую полезность и в случае фракталов. Например, все самоподобные фрактальные кривые также имеют бесконечную длину и бесконечно малую толщину. В то же время каждая из них демонстрирует свое, строго специфичное отсутствие гладкости, что делает задачу построения изображения таких кривых более трудной, чем самые сложные задачи евклидовой геометрии. Таким образом, согласно вышеупомянутым принципам даже самое лучшее изображение оказывается истинным только в очень ограниченном диапазоне. Однако установление ограничения на очень маленькие или очень большие детали не только вполне приемлемо, а даже в высшей степени разумно, поскольку и внешние, и внутренние пороги так или иначе либо присутствуют, либо предполагаются в Природе. Следовательно, типичную фрактальную кривую можно вполне удовлетворительно изобразить с помощью большого, но ограниченного количества элементарных штрихов.

Чем больше число таких штрихов и чем точнее они наносятся, тем ближе изображение к идеальной кривой, так как точное соблюдение относительных размеров штрихов и их взаимного расположения в пространстве играет весьма существенную роль в определении фрактала. Руками так не нарисуешь, а вот компьютер справляется просто превосходно. На содержание всех моих эссе в немалой степени повлияла возможность использования все более сложных компьютерных систем — равно как и возможность обратиться к услугам все более искушенных программистов, настоящих виртуозов своего дела, управлявших этими системами. Кроме того, мне посчастливилось получить доступ к аппарату, способному выдавать готовые к печати иллюстрации; некоторые результаты его работы вошли и в эту книгу.

Графическое представление — это чудесное средство для сопоставления моделей с реальностью. Когда данные случайной выборки согласуются с данными, полученными при помощи какого-либо аналитического метода, и при этом результаты моделирования не выглядят «реалистичными», винить следует именно аналитический метод. Формула может описать лишь малую долю взаимоотношений между моделью и реальностью, в то время как человеческий глаз обладает огромными способностями к интеграции и различению. Конечно, глаз иногда

принимает за истинные те отношения, которые впоследствии не подтверждаются статистическим анализом, но эта проблема возникает, как правило, в тех областях науки, где исследуемые объекты очень малы. Там же, куда направляемся мы с вами, объекты просто огромны.

Кроме того, графическое представление помогает обнаружить новые области применения для уже существующих моделей. Впервые я столкнулся с такой возможностью, разглядывая иллюстрацию, посвященную случайным блужданиям, в книге Феллера [147] — кривая на рисунке выглядела как контур рассеченной пополам горы, а те точки, где она пересекала временную ось, напомнили мне о некоторых данных из проводимого мною в то время исследования закономерностей возникновения ошибок на телефонных линиях. Посетившие меня в тот момент озарения привели в конце концов к теориям, представленным, соответственно, в главах 28 и 31. Мои собственные полученные с помощью компьютера иллюстрации аналогичным образом послужили источником вдохновения как для меня, так и для тех, кто по моей просьбе «примеривал» мои идеи к другим научным дисциплинам (каковых дисциплин, кстати, оказалось больше, чем я себе представлял).

Возможности графики естественным образом расширяет кинематография — фрагменты, посвященные некоторым классическим фракталам, можно увидеть в [417].

ОБЩЕПРИНЯТЫЕ ФОРМЫ ГЕОМЕТРИЧЕСКОГО «ИСКУССТВА» И ЕГО НОВЫЕ ФРАКТАЛЬНЫЕ ФОРМЫ

Картинки на форзацах книги и некоторые из разбросанных там и сям узоров представляют собой непреднамеренный результат ошибочного программирования. Я много раз слышал и даже читал, что мои иллюстрации — и те, что призваны подтвердить те или иные идеи, и те, что получились случайно, — называют не иначе как «Новой Формой Искусства».

Заявляю со всей решительностью — в задачу настоящего эссе никоим образом не входит конкурировать с художниками. Однако раз об этом говорят, следует прояснить ситуацию. Вопрос заключается не в том, насколько аккуратно выполнены графические изображения, не в том, нарисованы они от руки или отпечатаны на принтере, и даже не в том, кто, собственно, рисовал оригиналы — человек или компьютер (хотя с экономической точки зрения последний пункт как раз весьма важен). Просто мы и впрямь имеем дело с новой формой спорного, но освященного временем утверждения, что всякое графическое представление математических концепций является формой искусства, причем согласно канонам этой формы, чем проще изображение, тем лучше — этакий, выражаясь языком художников, «минимализм».

Распространено мнение, что минималисты обязаны обходиться ограниченным набором стандартных геометрических форм: прямых, окружностей, спиралей и так далее. Однако это не совсем так. Используемые в теоретических моделях фракталы также имеют весьма простую форму (вследствие того, что теоретическая наука поощряет простоту форм). И я вполне могу согласиться с тем, что многие из фракталов можно рассматривать как новую форму минималистского геометрического искусства.

Не напоминают ли вам некоторые его образцы творения М.К.Эшера? Если да, то в этом нет ничего удивительного, так как Эшер весьма разумно подошел к выбору источника вдохновения — этим источником стали гиперболические черепичные покрытия из книги Фрикке и Клейна [154], которые (см. главу 18) очень близки к формам, характерным для царства фракталов.

Фрактальное «новое геометрическое искусство» демонстрирует поразительное родство с картинами старых мастеров или творениями «изящной» архитектуры. Одна из очевидных причин заключается в том, что и фракталы, и произведения классических визуальных жанров искусства включают в себя многие масштабы длины и элементы самоподобия (см. [399]). Вполне возможно, что именно по этим причинам, а также потому, что фрактальное искусство возникло из попыток постичь законы Природы, имитируя ее, мы и принимаем его с такой готовностью — оно нам не чуждо. К абстрактной живописи у нас двойственное отношение: те, например, картины, которые мне нравятся, близки к фрактальному геометрическому искусству, остальные же больше тяготеют к стандартной геометрии, что лично мне не доставляет никакого эстетического удовольствия.

Здесь возникает парадоксальная ситуация: если верить Дайсону (см. главу 1), может показаться, что современные математика, музыка, живопись и архитектура каким-то образом связаны между собой. Однако реальных оснований для такого вывода нет, особенно в отношении архитектуры: например, какой-нибудь шедевр Миса ван дер Роэ являет собой откровенный возврат к немасштабируемой евклидовой геометрии, в то время как любое строение эпохи расцвета изящных искусств просто изобилует фрактальными элементами.

СООБРАЖЕНИЯ УДОБСТВА

Главы расположены в порядке возрастания сложности обсуждаемых в них предметов; сделано это для облегчения восприятия основных концепций, вводимых постепенно, по мере возникновения необходимости. То, что такой подход вообще оказывается возможным, является немалым плюсом для теории фракталов. Текст изобилует повторениями, так что читатель едва ли сможет потерять основную нить рассуждения, даже пропустив несколько абзацев, которые покажутся ему слишком скучными или слишком сложными (особенно те, что содержат формулы, выходящие за пределы элементарной математики). Большое количество важных сведений можно почерпнуть из пояснений к иллюстрациям.

Как уже упоминалось, иллюстрации помещены после тех глав, в которых впервые рассматриваются соответствующие феномены. Кроме того, автор довольно часто испытывает необходимость побеседовать частным порядком с той, скажем так, категорией читателей, которая может испытать крайний дискомфорт, если какое-либо место в книге останется нерассмотренным или необъясненным. Такие отступления вставлены прямо в основной текст и снабжены лично мною изобретенными скобками < и ► — для того, чтобы остальные могли их легко заметить и пропустить. Есть и другие отступления, посвященные не настолько существенным замечаниям, чтобы развивать их здесь в полном объеме. В целом же в этом эссе гораздо меньше отступлений, чем во «Фракталах» 1977 г.

Кроме того, теперь, как мне кажется, можно с одного взгляда на текст определить, идет речь о теоретической размерности D или же об экспериментальной. Значение последней, как правило, известно лишь с точностью до одного или двух десятичных знаков и записывается поэтому как 1, 2 или 1, 37. Значение теоретической размерности записывается в виде целых чисел, отношений целых чисел, отношений логарифмов целых чисел или в десятичной форме, по меньшей мере, с четырьмя знаками после запятой.

И СНОВА ГЛАВНАЯ ТЕМА

Отрекшись от всевозможных побочных для настоящего эссе целей, хочу напомнить, о чем я говорил в первой главе. Эта книга представляет собой одновременно и манифест, и собрание прецедентов; за редкими исключениями она составлена из тех теоретических предположений, которые я в свое время высказывал и которые часто приводили к извлечению из праха всевозможных древних идей и их пересмотру с современной точки зрения.

Ни одна из этих теорий не остановилась в своем развитии, а некоторые все еще не вышли из зародышевой стадии. Для одних теорий эта книга — первый выход в свет, другие уже описаны в моих более ранних работах. Кроме моих собственных теорий, в книге упоминаются всевозможные сторонние разработки, инспирированные моими предыдущими исследованиями и давшие мне стимул продолжать работу. Я, однако, далек от мысли попытаться составить полный список областей человеческой деятельности, в которых оказались полезными фракталы — мне не хочется разрушать стиль этого эссе в его теперешнем виде и терять дух манифеста.

И последнее напоминание: в мою задачу не входило проводить подробное исследование каждого прецедента (безусловно, желательное для специалистов). Однако многие темы упоминаются неоднократно. Да, вот еще что: не забывайте о предметном указателе.

II ТРИ КЛАССИЧЕСКИХ ФРАКТАЛА - СОВЕРШЕННО РУЧНЫЕ

5 КАКОВА ПРОТЯЖЕННОСТЬ ПОБЕРЕЖЬЯ БРИТАНИИ?

Прежде чем познакомиться с первым видом фракталов — а именно, с кривыми, фрактальная размерность которых превышает 1, — рассмотрим типичный участок какого-нибудь берега. Очевидно, что его длина не может быть меньше расстояния по прямой между его начальной и конечной точками. Однако, как правило, береговые линии имеют неправильную форму — они извилисты и изломаны, и их длины, вне всякого сомнения, значительно превышают расстояния между их крайними точками, измеренные по прямой.


Известно много способов оценить длину береговой линии более точно, и в этой главе мы проанализируем некоторые из них. В конце концов мы придем к очень примечательному выводу: длина береговой линии — понятие весьма скользкое, и голыми руками его не ухватишь. Какой бы метод измерения мы ни применяли, результат всегда одинаков: длина типичного побережья очень велика и настолько нечетко определена, что удобнее всего считать ее бесконечной. Следовательно, если кому-нибудь вздумается сравнить различные берега с точки зрения их протяженности, ему придется подыскать что-нибудь взамен понятия длины, которое к данному случаю неприменимо.

В этой главе мы как раз и займемся поисками подходящей замены, причем в процессе поисков нам не избежать знакомства с различными формами фрактальных концепций размерности, меры и кривой.

АЛЬТЕРНАТИВНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ

Метод А. Установим раствор измерительного циркуля на некоторую заданную длину ε, которую назовем длиной шага, и пройдемся этим циркулем вдоль интересующей нас береговой линии, начиная каждый новый шаг в той точке, где закончился предыдущий. Количество шагов, умноженное на длину е, даст нам приблизительную длину берега L(ε). Со школьной скамьи нам известно, что если повторять эту операцию, каждый раз уменьшая раствор циркуля, то можно ожидать, что величина L(ε) быстро устремится к некоторому вполне определенному значению, называемому истинной длиной. Однако то, что происходит на деле, никак не соответствует нашим ожиданиям. В типичном случае наблюдаемая длина L(ε) склонна увеличиваться неограниченно.

Причина такого ее поведения очевидна: если рассмотреть какой-нибудь полуостров или бухту на картах масштаба 1/100 000 и 1/10 000, то на последней карте мы ясно различим более мелкие полуострова и бухты, которых не было видно на первой. Карта того же участка, выполненная в масштабе 1/1000, покажет нам еще более мелкие полуостровки и бухточки, и так далее. Каждая новая деталь увеличивает общую длину берега.

Вышеописанная процедура подразумевает, что линия берега имеет слишком неправильную форму, и поэтому ее длина не может быть непосредственно представлена в виде суммы длин простых геометрических кривых, значения длин которых можно найти в справочниках. То есть, Метод А заменяет береговую линию на последовательность ломаных линий, составленных из прямолинейных участков, длину которых мы определять умеем.

Метод В. Такого же «сглаживания» можно добиться и другими способами. Вообразите себе человека, проходящего вдоль берега по кратчайшему пути, траектория которого нигде не отходит от воды далее чем на заданное расстояние ε. Дойдя до конечной точки, он возвращается назад, несколько уменьшив при этом величину ε. Затем еще и еще, пока, наконец, величина ε не достигнет, скажем, 50 см. Уменьшать ее далее не представляется возможным, так как человек слишком велик и неуклюж, чтобы суметь проследить более детализированную траекторию. Мне могут возразить, что эти недостижимые мелкие детали, во-первых, не представляют для человека никакого непосредственного интереса, а во-вторых, подвержены столь значительным изменениям в зависимости от времени года и высоты прилива, что их подробная регистрация вообще теряет всякий смысл. Первое из возражений мы рассмотрим позднее в этой главе. Что касается второго возражения, то его можно нейтрализовать, ограничившись рассмотрением скалистого берега при низком приливе и спокойной воде. В принципе, человек может проследить и более детализированные приближенные кривые, призвав себе на помощь мышь, затем муравья и так далее. И снова, по мере того, как наш ходок следует все более близкой к воде тропой, расстояние, которое ему предстоит пройти, неограниченно возрастает.

Метод С. Метод В подразумевает определенную асимметричность между водой и берегом. Для того, чтобы избежать этой асимметричности, Кантор предложил рассматривать береговую линию словно бы через расфокусированный объектив, вследствие чего каждая точка превращается в круглое пятно радиуса ε. Другими словами, Кантор рассматривает все точки — как на суше, так и на воде, — расстояние от которых до собственно береговой линии не превышает ε. Эти точки образуют некое подобие сосиски или ленты шириной (пример такой «сосиски» — правда, в ином контексте — приведен на рис. 56). Измерим площадь полученной ленты и разделим ее на . Если бы береговая линия была прямой, то лента представляла бы собой прямоугольник, а найденная вышеописанным образом величина оказалась бы действительной длиной берега. Имея дело с реальными береговыми линиями, мы получаем приблизительную оценку длины L(ε), которая неограниченно возрастает при уменьшении ε.

Метод D. Вообразите себе карту, выполненную в манере худож- ников-пуантилистов, т. е. такую, где материки и океаны изображены цветными круглыми пятнами радиуса ε. Вместо того, чтобы считать центрами пятен точки, принадлежащие береговой линии, как в Методе С, потребуем, чтобы количество пятен, полностью скрывающих линию, было наименьшим. В результате у мысов пятна будут по большей части лежать на суше, а у бухт — в море. Оценкой длины береговой линии здесь будет результат деления закрытой пятнами площади на . «Поведение» этой оценки также оставляет желать лучшего.

ПРОИЗВОЛЬНОСТЬ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Резюмируя предыдущий раздел, заметим, что результат применения любого из четырех методов всегда один и тот же. По мере уменьшения е приблизительная длина кривой устремляется в бесконечность.

Для того, чтобы в должной мере уяснить значение этого факта, произведем аналогичное измерение длины какой-либо обыкновенной евклидовой кривой. Например, на отрезке прямой приблизительные оценочные данные измерения в основном совпадают и определяют искомую длину. В случае окружности приблизительное значение длины возрастает, но довольно быстро устремляется к некоторому конкретному пределу. Кривые, длину которых можно определить таким образом, называются спрямляемыми.

Еще более поучительно попробовать измерить длину какой-нибудь из береговых линий, одомашненных человеком, — скажем, побережья вблизи Челси в его сегодняшнем виде. Поскольку очень большие складки местности человек пока оставляет без изменений, установим на нашем циркуле очень большой раствор ε и будем его постепенно уменьшать. Как и следовало ожидать, длина береговой линии при этом будет расти.

Однако здесь имеется одна интересная особенность: при дальнейшем уменьшении ε мы неизбежно попадаем в некую промежуточную зону, где длина L(ε) почти не изменяется. Эта зона простирается приблизительно от 20 м до 20 см (очень приблизительно). Когда ε становится меньше 20 см, длина L(ε) снова начинает возрастать — теперь на результат измерения влияют уже отдельные камни. Таким образом, если построить график изменения величины L(ε) как функции от ε, то на ней, вне всякого сомнения, обнаружится плоский участок при значениях е в интервале от 20 м до 20 см — на аналогичных графиках для естественных «диких» побережий подобных плоских участков не наблюдается.

Очевидно, что измерения, произведенные в этой плоской зоне, обладают огромной практической ценностью. Поскольку границы между различными научными дисциплинами являются, в основном, результатом договоренности между учеными о разделении труда, мы можем, например, передать все феномены, масштабы которых превышают 20 м, т. е. те, до которых человек еще не дотянулся, в ведомство географии. Такое ограничение даст нам вполне определенную географическую длину. Береговая охрана может с успехом использовать то же значение ε для работы с «дикими» берегами, а энциклопедии и альманахи сообщат всем желающим соответствующую длину L(ε).

С другой стороны, мне трудно представить, что все заинтересованные правительственные учреждения пусть даже какой-либо одной страны договорятся между собой об использовании единого значения ε, а уж принятие его всеми странами мира совершенно невозможно вообразить. Ричардсон [494] приводит такой пример: в испанских и португальских энциклопедиях приводится различная длина сухопутной границы между этими странами, причем разница составляет 20% (так же обстоит дело с границей между Бельгией и Нидерландами). Это несоответствие, должно быть, частично объясняется различным выбором ε. Эмпирические данные, которые мы вскоре обсудим, показывают, что для возникновения такой разницы достаточно, чтобы одно значение ε отличалось от другого всего лишь в два раза; кроме того, нет ничего удивительного в том, что маленькая страна (Португалия) измеряет длину своих границ более тщательно, чем ее большой сосед.

Второй и более значительный довод против выбора произвольного ε носит философский и общенаучный характер. Природа существует независимо от человека, и всякий, кто приписывает слишком большую важность какому-либо конкретному значению ε или L(ε), предполагает, что определяющим звеном в процессе постижения Природы является человек со своими общепринятыми мерками или весьма переменчивыми техническими средствами. Если береговым линиям суждено когда-нибудь стать объектами научного исследования, вряд ли нам удастся законодательным порядком запретить неопределенность, наблюдаемую в отношении их длин. Как бы то ни было, концепция географической длины вовсе не столь безобидна, как представляется на первый взгляд. Она не является до конца «объективной», так как при определении длины таким образом неизбежно влияние наблюдателя.

ПРИЗНАНИЕ И ЗНАЧЕНИЕ ПРОИЗВОЛЬНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Несомненно, многие придерживаются мнения, что береговые линии представляют собой неспрямляемые кривые, и я, если уж на то пошло, не могу припомнить, чтобы кто-нибудь считал иначе. Однако мои поиски письменных свидетельств в пользу этого мнения потерпели почти полный провал. Помимо цитат из Перрена, приведенных во второй главе, имеется еще вот такое наблюдение в статье Штейнгауза [539]: «Измеряя длину левого берега Вислы с возрастающей точностью, можно получить значения в десятки, сотни и даже тысячи раз большие, чем то, что дает школьная карта... Весьма близким к реальности представляется следующее заявление: большинство встречающихся в природе дуг не являются спрямляемыми. Это заявление противоречит распространенному мнению, сводящемуся к тому, что неспрямляемые дуги — математическая фикция, а в природе все дуги спрямляемы. Из этих двух противоречивых заявлений верным, по всей видимости, следует считать все же первое». Однако ни Перрен, ни Штейнгауз так и не удосужились разработать свои догадки подробнее и довести их до логического конца.

К. Фадиман рассказывает одну занятную историю. Его друг Эдвард Каснер несколько раз проводил такой эксперимент: он «спрашивал у маленьких детей, какова, по их мнению, общая длина побережья Соединенных Штатов. После того, как кто-то из детей высказывал достаточно «разумное» предположение,... Каснер... предлагал им подумать о том, насколько можно увеличить эту цифру, если очень тщательно измерить периметр всех мысов и бухт, затем так же тщательно проследить меньшие мыски и бухточки в каждом из этих мысов и в каждой из этих бухт, затем измерить каждый камешек и каждую песчинку из тех, что образуют береговую линию, каждую молекулу, каждый атом и т. д. Получалось, что берег может быть каким угодно длинным. Дети понимали это сразу, а вот со взрослыми у Каснера возникали проблемы.» История, конечно, очень мила, однако вряд ли она имеет отношение к моим поискам. Каснер явно не ставил перед собой цель выделить некий аспект реальности, достойный дальнейшего изучения.

Таким образом, можно сказать, что статья [356] и книга, которую вы держите в руках, представляют собой по существу первые работы, посвященные этой теме.

В своей книге «Воля верить»1 Уильям Джеймс пишет: «То, что не укладывается в рамки классификаций... всегда являет собой тучную ниву для великих открытий. В любой науке вокруг общепризнанных и упорядоченных фактов вечно кружит пыльное облако исключений из правил — явлений малозаметных, непостоянных, редко встречающихся, явлений, которые проще игнорировать, нежели рассматривать. Всякая наука стремится к идеальному состоянию замкнутой и строгой системы истин... Феномены, не подлежащие классификации в рамках системы, считаются парадоксальными нелепостями и заведомо не истинны. Ими пренебрегают и их отвергают, исходя из лучших побуждений научной совести... Тот, кто всерьез займется иррегулярными феноменами, окажется способен создать новую науку на фундаменте старой. По завершении же этого процесса правилами обновленной науки по большей части станут вчерашние исключения».

Настоящее эссе, скромной целью которого является полное обновление геометрии Природы, описывает феномены, настолько не вписывающиеся в классификацию, что говорить о них можно лишь с позволения цензуры. С первым из таких феноменов вы встретитесь уже в следующем разделе.

ЭФФЕКТ РИЧАРДСОНА

Эмпирическое исследование изменения приблизительной длины L(ε), получаемой с помощью Метода А, описано в статье Ричардсона [494], ссылка на которую по счастливой (или роковой) случайности попала мне на глаза. Я обратил на нее внимание только потому, что я был наслышан о Льюисе Фрае Ричардсоне как о выдающемся ученом, оригинальность мышления которого была сродни эксцентричности (см. главу 40). Как мы увидим в главе 10, человечество обязано ему некоторыми наиболее глубокими и долговечными идеями относительно природы турбулентности — особого внимания среди них заслуживает та, согласно которой турбулентность предполагает возникновение самоподобного каскада. Он также занимался и другими сложными проблемами — такими, например, как природа вооруженного конфликта между государствами. Его опыты являли собой образец классической простоты, однако он, если возникала такая необходимость, не колеблясь пользовался и более утонченными концепциями.

Приведенные на рис. 57 графики, обнаруженные уже после смерти Ричардсона среди его бумаг, были опубликованы в чуть ли не секретном (и совершенно не подходящем для таких публикаций) «Ежегоднике по общим системам». Рассмотрев эти графики, мы приходим к заключению, что существуют две постоянные (назовем их λ и D) — такие, что для определения длины береговой линии посредством построения приближенной к ней ломаной необходимо взять примерно −D интервалов длины ε и записать следующую формулу:

L(ε)~Fε1−D.

Значение показателя D зависит, по всей видимости, от характера измеряемой береговой линии, причем различные участки этой линии, рассматриваемые по отдельности, могут дать различные D. Для Ричардсона величина D была просто удобным показателем, не имеющим какого-либо особенного смысла. Однако похоже, что значение этого показателя не зависит от выбранного метода оценки длины береговой линии. А значит, он заслуживает самого пристального внимания.

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ [356]

Изучив работу Ричардсона, я предположил [356], что хотя показатель D не является целым числом, его можно и нужно понимать как размерность — точнее, как фрактальную размерность. Разумеется, я вполне осознавал, что все вышеперечисленные методы измерения L(ε) базируются на нестандартных обобщенных определениях размерности, уже применяемых в чистой математике. Определение длины, основанное на покрытии береговой линии наименьшим числом пятен радиуса ε, используется в [481] для определения размерности покрытия. Определение длины, основанное на покрытии береговой линии лентой шириной , воплощает идею Кантора и Минковского (см. рис. 56), а соответствующей размерностью мы обязаны Булигану. Однако эти два примера лишь намекают на существование многих размерностей (большинство из которых известны лишь немногим специалистам), которые блистают в различных узкоспециализированных областях математики. Некоторые из этих размерностей мы обсудим более подробно в главе 39.

Зачем математикам понадобилось вводить это изобилие различных размерностей? Затем, что в определенных случаях они принимают различные значения. К счастью, с такими случаями вы в этом эссе не встретитесь, поэтому список возможных альтернативных размерностей можно с чистой совестью сократить до двух, о которых я, правда, еще не упоминал. Старейшая и подробнее исследованная размерность из нашего списка восходит еще к Хаусдорфу и служит для определения фрактальной размерности — очень скоро мы ею займемся. Вторая, более простая, размерность называется размерностью подобия: она носит не такой общий характер, как первая размерность, однако оказывается более чем адекватной во многих случаях — ее мы рассмотрим в следующей главе.

Разумеется, я не собираюсь приводить здесь математическое доказательство того, что показатель Ричардсона D является размерностью. Честно говоря, я не представляю, как можно провести такое доказательство в рамках какой бы то ни было естественной науки. Я хочу лишь обратить внимание читателя на тот факт, что понятие длины ставит перед нами концептуальную задачу, а показатель D предоставляет удобное и изящное решение. Теперь, когда фрактальная размерность заняла свое место в изучении береговых линий, вряд мы захотим, из каких бы то ни было особенных соображений, возвращаться к тем временам, когда мы бездумно и наивно полагали D=1. Тому, кто все еще считает D=1, придется теперь постараться, если он пожелает доказать свою правоту.

Следующий шаг — объяснение формы береговых линий и выведение значения D из других, более фундаментальных соображений — я предлагаю отложить до главы 28. На этом этапе достаточно сказать, что в первом приближении D=3/2. Это значение слишком велико, чтобы верно описывать факты, однако его более чем достаточно для того, чтобы мы могли заявить: можно, должно и естественно полагать, что размерность береговой линии превосходит обычное евклидово значение для кривой D=1.

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ ХАУСДОРФА

Если согласиться с тем, что различные естественные береговые линии обладают бесконечной длиной, а также с тем, что значение длины, основанное на антропометрической величине ε, дает лишь частичное представление о реальном положении дел, то каким образом можно сравнить между собой разные берега? Так как бесконечность ничем не отличается от бесконечности, умноженной на четыре, много ли нам будет проку от утверждения, что длина любого берега в четыре раза больше, чем длина любой из его четвертей? Необходим лучший способ для выражения вполне разумной идеи о том, что кривая должна обладать некоторой «мерой», причем эта мера для всей кривой должна быть в четыре раза больше, чем та же мера для любой из ее четвертей.

В высшей степени остроумный метод для достижения этой цели предложил Феликс Хаусдорф. В основе его метода лежит тот факт, что линейная мера многоугольника вычисляется сложением длин его сторон без каких бы то ни было их преобразований. Можно предположить, что эти длины сторон возводятся в степень D=1, равную евклидовой размерности прямой (причина такого предположения вскоре станет очевидной). Аналогичным образом вычисляется мера поверхности внутренней области замкнутого многоугольника — посредством покрытия ее квадратами, нахождения суммы длин сторон этих квадратов и возведения ее в степень D=2 (евклидова размерность плоскости). Если же использовать при вычислениях «неверную» степень, то результат этих вычислений не даст нам никакой полезной информации: площадь любого замкнутого многоугольника окажется равной нулю, а длина его внутренней области будет бесконечной.

Рассмотрим с таких позиций полигональную (кусочно-линейную) аппроксимацию береговой линии, составленной из малых интервалов длины ε. Возведя длину интервала в степень D и умножив ее на число интервалов, мы получим некую величину, которую можно предварительно назвать «аппроксимативной протяженностью в размерности D». Так как, согласно Ричардсону, число сторон равно N=Fε−D то наша аппроксимативная протяженность принимает значение D−D=F.

Таким образом, теоретически аппроксимативная протяженность в размерности D не зависит от ε. На практике же можно наблюдать лишь незначительное изменение этой аппроксимативной протяженности при изменении е.

Кроме того, получает простое подтверждение и обобщение тот факт, что длина внутренней области квадрата бесконечна: аппроксимативная протяженность береговой линии, определенная при любой размерности d<D, стремится к бесконечности при ε→0. Так же обстоит дело и с равенством нулю площади и объема прямой. При любом d>D соответствующая аппроксимативная протяженность береговой линии стремится к нулю при ε→0. То есть аппроксимативная протяженность береговой линии демонстрирует благоразумное поведение тогда и только тогда, когда d=D.

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ КРИВОЙ МОЖЕТ БЫТЬ БОЛЬШЕ ЕДИНИЦЫ; ФРАКТАЛЬНЫЕ КРИВЫЕ

Согласно замыслу своего создателя, хаусдорфова размерность сохраняет за собой обязанности обычной размерности и служит показателем степени при определении меры.

Однако с другой стороны, размерность D в высшей степени необычна, — она выражается дробным числом! Мало того, она больше единицы, которая представляет собой «естественную» размерность для кривых (можно строго доказать, что единице равна и их топологическая размерность DT).

Я предлагаю называть кривые, фрактальная размерность которых превосходит их топологическую размерность 1, фрактальными кривыми. А в качестве краткого резюме для настоящей главы могу предложить следующее утверждение: в географических масштабах береговые линии можно моделировать с помощью фрактальных кривых. Береговые линии по своей структуре фрактальны.

Рис. 55. ОБЕЗЬЯНЬЕ ДЕРЕВО


На данном этапе этот небольшой рисунок следует рассматривать просто как декоративный элемент, он всего лишь заполняет пустое место.

Однако после прочтения главы 14 читатель сможет обнаружить здесь подсказку для распутывания «архитектурной» загадки на рис. 210. Более серьезную подсказку дает нижеприведенный генератор:

Если у математика возникает необходимость «приручить» какую-нибудь особенно нерегулярную кривую, он может воспользоваться следующей стандартной процедурой: выбирается некое значение ε, и вокруг каждой точки кривой строится круг радиуса ε. Эта процедура, восходящая, по меньшей мере, к Герману Минковскому, а то и к самому Георгу Кантору, несколько грубовата, но зато весьма эффективна. (Что касается термина сосиска, то его происхождение, согласно непроверенным слухам, как-то связано с применением Норбертом Винером данной процедуры к броуновским кривым.)

На помещенных здесь иллюстрациях вышеописанное сглаживание применяется не к реальным берегам, а к одной теоретической кривой, которую мы построим несколько позже (см. рис. 79) путем постоянного добавления все более мелких деталей. Сравнивая изображенный справа кусок сосиски с правым концом сосиски, помещенной вверху, мы видим, что критический этап в построении кривой наступает, когда кривая начинает включать в себя детали меньшего, чем ε, размера. На более поздних этапах сосиска существенно не изменяется.

Рис. 57. ЭМПИРИЧЕСКИЕ ДАННЫЕ РИЧАРДСОНА ОТНОСИТЕЛЬНО СКОРОСТИ РОСТА ДЛИН БЕРЕГОВЫХ ЛИНИЙ


На этом рисунке приведены экспериментальные результаты измерения длины кривой, произведенные на различных кривых с использованием равносторонних многоугольников с уменьшающейся длиной стороны ε. Как и ожидалось, в случае окружности измерения с возрастающей точностью дают величину, которая очень быстро стабилизируется около вполне определенного значения.

В случае береговых линий приближенные значения длины, напротив, не стабилизируются вовсе. По мере того, как длина шага ε стремится к нулю, аппроксимативные значения длины, отложенные в дважды логарифмической системе координат, образуют прямую с отрицательным наклоном. Так же обстоит дело и с сухопутными границами между странами. Наведенные Ричардсоном в различных энциклопедиях справки вскрыли значительные различия в определении длины общей границы картографами соответствующих стран: например, длина границы между Испанией и Португалией составляет 987 км с точки зрения испанцев и 1214 км с точки зрения португальцев; аналогичным образом пострадала и граница между Нидерландами и Бельгией (380 и 449 км). Так как угловой коэффициент соответствующих прямых равен -0,25, двадцатипроцентная разница между результатами измерений означает двукратную разницу между принятыми для этих измерений значениями ε — не такое уж невероятное предположение.

Ричардсон не дал никакой теоретической интерпретации различному наклону своих прямых. Мы же с вами намерены интерпретировать береговые линии как приближения к фрактальным кривым и рассматривать угловые коэффициенты соответствующих им прямых как приближенные значения разности 1−D, где D — фрактальная размерность.

6 СНЕЖИНКИ И ДРУГИЕ КРИВЫЕ КОХА

Для более полного понимания моей интерпретации ричардсонова D как фрактальной размерности перейдем от природных феноменов, над которыми мы не имеем никакой власти, к полностью подвластным нашей воле геометрическим конструкциям.

САМОПОДОБИЕ И КАСКАДЫ

До сих пор мы больше уделяли внимание геометрической сложности береговых линий; настало время упомянуть и о том, что их структура в значительной степени упорядочена.

Хотя выполненные в разных масштабах карты и различаются в конкретных деталях, более общие их особенности остаются неизменными. В грубом приближении крупные детали береговых линий геометрически идентичны мелким, разница только в масштабе.

Такую форму можно сравнить с узором, который рисует на небе какой-нибудь многоступенчатый фейерверк: на каждом этапе его сгорания в общую картину добавляются новые, все более мелкие детали, идентичные по форме результату исходного взрыва. Однако из упоминавшихся выше трудов Льюиса Ричардсона, посвященных турбулентности, мы можем позаимствовать более подходящее сравнение и назвать порождающий такие структуры механизм каскадом.

Если каждая из частей некоторой формы геометрически подобна целому, то и форма, и порождающий ее каскад называются самоподобными. В настоящей главе мы займемся исследованием самоподобия, используя для этого самые что ни на есть правильные фигуры.

Наиболее полную противоположность самоподобным формам представляют собой кривые, которые имеют либо только один масштаб (например, окружность), либо два четко разделенных масштаба (например, окружность, украшенная «гребнем» из множества меньших полуокружностей). Такие формы мы можем охарактеризовать как немасштабируемые.

ТЕРАГОНЫ КАК МОДЕЛИ БЕРЕГОВЫХ ЛИНИЙ. ТРОИЧНАЯ КРИВАЯ КОХА K

Если мы хотим получить кривую, содержащую бесконечное число масштабов длины, то надежнее всего будет ввести их туда собственноручно, один за другим. Правильный треугольник с длиной стороны, равной 1, имеет один масштаб, правильные треугольники с длиной стороны, равной 1/3, также имеют один масштаб, только меньший — уменьшая длину стороны далее по правилу (1/3)k, мы будем получать треугольники все меньшего масштаба. Нагромоздив затем все эти треугольники друг на друга (как показано на рис. 70), получим форму, содержащую все масштабы, меньшие 1.

В сущности, мы предполагаем, что некоторый участок береговой линии, изображенный в масштабе 1/1 000 000, выглядит как прямой отрезок единичной длины; назовем такой участок инициатором. Затем мы предполагаем, что на карте масштаба 3/1000 000 становится видимой некая деталь, а именно, — выступ в форме равностороннего треугольника, занимающий среднюю треть исходного отрезка. Полученное таким образом второе приближение — ломаную, составленную из четырех отрезков равной длины — назовем генератором. Предположим далее, что еще более подробная карта (масштаба 9/1000 000) выглядит как результат замены каждого из четырех отрезков генератора уменьшенной в три раза копией этого самого генератора, т. е. из каждого выступа вырастает по два новых выступа той же формы, но меньшего размера.

Продолжая в том же духе, мы заменяем все прямолинейные отрезки ломаными линиями, и первоначально прямой инициатор постепенно превращается во все более длинную ломаную кривую. Поскольку мы будем иметь дело с такими кривыми на всем протяжении этого эссе, предлагаю ввести для их обозначения новый термин терагоны (от греч. «чудовище, странное создание» и «угол»). Кстати, префикс тера обозначает (очень уместно, надо сказать) в метрической системе умножение на 1012.

Если продолжить вышеописанный каскадный процесс до бесконечности, то наши терагоны устремятся к пределу, рассмотренному впервые фон Кохом [574] (см. рис. 74). Назовем такую кривую троичной кривой Коха и обозначим символом K.

На рис. 71 хорошо видно, что площадь этой кривой обращается в нуль. С другой стороны, с каждой ступенью построения ее общая длина увеличивается в 4/3 раза, следовательно, в пределе длина кривой Коха бесконечна. Более того, кривая Коха непрерывна, но нигде не имеет касательной — точно график непрерывной функции, не имеющей производной.

В качестве модели береговой линии кривая K, представляет собой лишь очень отдаленное приближение, но не потому, что она слишком неправильна — скорее потому, что по сравнению с неправильностью типичной береговой линии неправильность кривой Коха уж очень предсказуема. В главах 24 и 28 мы попробуем добиться лучшего соответствия с помощью некоторой рандомизации процесса построения.

КРИВАЯ КОХА В РОЛИ ЧУДОВИЩА

У человека, прочитавшего предыдущий раздел, может сложиться впечатление, что кривая Коха относится к числу наиболее очевидных и интуитивно понятных геометрических фигур. Однако вовсе не так очевидны причины, толкнувшие фон Коха на ее построение. И уж совершенно загадочным представляется отношение к ней со стороны математиков. Чуть ли не единодушно они провозгласили кривую K чудовищной! За подробностями обратимся к работе Хана «Кризис здравого смысла» [190], которая, кстати, еще неоднократно нам пригодится. Хан пишет: «Характер [неспрямляемой кривой или кривой, к которой невозможно провести касательную] совершенно не укладывается в рамки того, что мы можем понять интуитивно. В самом деле, всего лишь после нескольких повторений простой операции сегментирования образующаяся фигура становится настолько сложной, что с трудом поддается непосредственному восприятию, а уж то, к чему эта кривая стремится в пределе, и вовсе невозможно себе представить. Только с помощью разума, применяя логический анализ, мы можем до конца проследить эволюцию этого странного объекта. Если бы мы положились в данном случае на здравый смысл, то составленное нами представление оказалось бы в корне ошибочным, поскольку здравый смысл неизбежно привел бы нас к заключению, что кривых, не имеющих касательной ни в одной своей точке, попросту не бывает. Этот первый пример неадекватности интуитивного подхода затрагивает самые фундаментальные концепции дифференцирования».

Надо отдать Хану должное — в своих высказываниях он не доходит до знаменитого восклицания Шарля Эрмита относительно недифферен- цируемых функций. В письме к Стилтьесу, датированном 20 мая 1893 года, Эрмит пишет об ужасе и отвращении, которые вызывает у него «это наказание Господне, эти жалкие функции без производных» ([211], II, с. 318). Конечно же, каждому из нас хочется верить в то, что великие лишены недостатков и что Эрмит просто шутил, однако из написанной в 1922 году «Заметки» Лебега ([295], I), можно заключить, что это не совсем так. Написав статью о поверхностях, к которым нельзя построить касательные плоскости (об «абсолютно измятых носовых платках»), Лебег представил ее Академии наук для публикации, однако «Эрмит сначала воспротивился включению статьи в «Comptes Rendus»1; примерно к этому времени относится его письмо Стилтьесу... »

Мы с вами уже знаем, что Перрен и Штейнгауз страха перед чудовищами не испытывали, однако единственным математиком, который возражал против общего мнения, основываясь именно на интуитивных соображениях (Штейнгауз возражал, опираясь на факты), был Поль Ле-ви [311]: «[Мне] всегда было удивительно слышать, что если руководствоваться в геометрии здравым смыслом, то непременно приходишь к выводу, что все непрерывные функции дифференцируемы. Насколько я могу судить по собственному опыту, начиная с моей первой встречи с концепцией производной и по сей день, верно как раз обратное».

Как ни печально, эти голоса остались неуслышанными. Почти все книги и абсолютно все музеи науки продолжают уверять нас в том, что недифференцируемые функции противны здравому смыслу, «чудовищны», «патологичны» или даже «психопатичны».

ПРИРУЧЕНИЕ КРИВОЙ КОХА. РАЗМЕРНОСТЬ D=ln4/ln3≈1,2618

Я утверждаю, что кривая Коха является грубой, но математически строгой моделью береговой линии. В качестве первой количественной проверки рассмотрим длину L(ε) троичного терагона Коха, длина сторон которого равна ε. На этот раз длину кривой можно измерить точно, получив при этом чрезвычайно удовлетворительный результат:

L(ε)=ε1−D.

Эта точная формула оказывается идентичной эмпирическому закону Ричардсона о длине побережья Британии. Для троичной кривой Коха имеем

D=ln4/ln3≈1,2618,

откуда следует, что значение D находится внутри интервала значений, полученных Ричардсоном!

< Доказательство: Очевидно, что L(1)=1, а

L(ε/3)=(4/3)L(ε).

Это уравнение имеет решение вида L(ε)=ε1−D если D удовлетворяет соотношению 3D−1=4/3.

Следовательно, D=ln4/ln3, что и следовало доказать. ►

Разумеется, в случае кривой Коха показатель D представляет собой не эмпирическую, а математическую постоянную. Таким образом, аргументы в пользу того, чтобы считать этот показатель размерностью, становятся еще более убедительными, чем в случае береговых линий.

С другой стороны, аппроксимативная хаусдорфова протяженность в размерности D (понятие, введенное в предыдущей главе) равна произведению εD на количество отрезков длины ε, т. е. εDε−D=1. Неплохое подтверждение тому, что величина D представляет собой хаусдорфову размерность. К сожалению, данное Хаусдорфом определение этой размерности весьма плохо поддается строгой математической трактовке. И даже если бы это было не так, идея обобщения понятия размерности на множество нецелых чисел настолько широка и чревата настолько серьезными последствиями, что более глубокое ее обоснование можно только приветствовать.

РАЗМЕРНОСТЬ ПОДОБИЯ

Оказывается, мы легко можем получить искомое более глубокое обоснование, рассмотрев случай самоподобных фигур и понятие размерности подобия. Мы часто слышим о том, что математики используют размерность подобия для приблизительного определения хаусдорфовой размерности, причем в большинстве случаев, рассматриваемых в этом эссе, такая приблизительная оценка оказывается верной. В применении к этим случаям мы вполне можем считать фрактальную размерность синонимом размерности подобия. < Аналогичным образом мы используем термин «топологическая размерность» как синоним обычной, «интуитивной», размерности. ►

В качестве своего рода стимулирующего вступления давайте рассмотрим стандартные самоподобные формы: отрезки прямой, прямоугольники на плоскости и т. д. (см. рис. 73). Евклидова размерность прямой равна 1, следовательно, при любом целочисленном «основании» b отрезок 0≤x<X может быть «покрыт» по всей «длине» (каждая точка при этом покрывается один и только один раз) некоторым количеством «частей», равным N=b. Эти «части» представляют собой отрезки (k−1)X/b≤x<kX/b, где k изменяется от 1 до b. Каждая часть может быть получена из целого с помощью преобразования подобия с коэффициентом r(N)=1/b=1/N.

Евклидова размерность плоскости равна 2. Отсюда аналогичным образом следует, что при любом значении b «целое», состоящее из прямоугольника с длинами сторон 0≤x<Xи0≤y<Y, может быть без остатка «разбито» на N=b2 частей. Части эти представляют собой прямоугольники, определяемые системой уравнений

Где k и h изменяются от 1 до b. И здесь каждая часть может быть получена из целого с помощью преобразования подобия с коэффициентом r(N)=1/b=1/N1/2.

В случае прямоугольного параллелепипеда аналогичное рассуждение приводит нас к коэффициенту r(N)=1/N1/3.

Не возникает никаких сложностей и с определением пространств, евклидова размерность E которых больше 3. (Здесь и далее мы будем обозначать евклидову — или декартову — размерность буквой E.) Для всех D-мерных параллелепипедов (D<E) соблюдается равенство

r(N)=1/N1/D.

Таким образом,

NrD=1.

Эквивалентные альтернативные выражения имеют следующий вид:

lnr(N)=ln(1/N1/D)=−(lnN)/D,

D=−lnN/lnr(N)=lnN/ln(1/r)=.

Перейдем теперь к нестандартным фигурам. Для того, чтобы показатель самоподобия имел формальный смысл, необходимо лишь, чтобы рассматриваемая фигура была самоподобной, т. е. чтобы ее можно было разбить на N частей, каждая из которых может быть получена из целой фигуры с помощью преобразования подобия с коэффициентом r (в сочетании со смещением или преобразованием симметрии). Полученная таким образом величина D всегда удовлетворяет равенству

0≤D≤E.

В случае троичной кривой Коха N=4, а r=1/3, отсюда D=ln4/ln3, что полностью совпадает с хаусдорфовой размерностью.

КРИВЫЕ. ТОПОЛОГИЧЕСКАЯ РАЗМЕРНОСТЬ

До сих пор мы, не особенно задумываясь, называли фигуру Коха K кривой; настало время разобраться с этим понятием. Здравый смысл подсказывает, что стандартная дуга представляет собой связное множество, причем если удалить любую его точку, то множество становится несвязным. А замкнутая кривая — это связное множество, разделяющееся после удаления двух точек на две стандартные дуги. По этим причинам фигуру Коха K можно считать кривой.

Любой математик скажет вам, что все фигуры, обладающие вышеуказанным свойством (будь то кривая K, интервал [0,1] или окружность), имеют топологическую размерность DT, равную 1. То есть у нас появляется еще одна концепция размерности! Будучи последователями Уильяма Оккама, все ученые прекрасно осведомлены о том, что «не следует множить сущности без необходимости». Здесь я должен признаться, что наши с вами метания между несколькими почти эквивалентными формами фрактальной размерности объясняются всего лишь соображениями удобства. А вот параллельное существование фрактальной и топологической размерности является самой что ни на есть суровой необходимостью. Читателям, пропустившим то отступление в главе 3, где дано определение фрактала, я рекомендую прочесть его сейчас; кроме того, каждому необходимо ознакомиться с разделом, озаглавленным РАЗМЕРНОСТЬ, в главе 41.

ИНТУИТИВНЫЙ СМЫСЛ РАЗМЕРНОСТИ D ПРИ НАЛИЧИИ ПОРОГОВ Λ И λ

Одна из работ Чезаро [74] начинается с эпиграфа:

«... безгранична воля, безграничны желания, несмотря на то, что силы наши ограничены, а осуществление мечты — в тисках возможности».1

В самом деле, тиски возможности властны над учеными в не меньшей степени, чем над шекспировскими Троилом и Крессидой. Для построения кривой Коха необходимо, чтобы каскад новых, с каждым разом уменьшающихся выступов уходил в бесконечность, однако в Природе всякий каскад обречен либо прекратиться, либо измениться. Мы, конечно, можем допустить существование бесконечной серии выступов, но охарактеризовать их как самоподобные можно только в определенных пределах. Когда длина уменьшается до значений, меньших нижнего предела, понятие береговой линии перестает принадлежать географии.

Таким образом, представляется разумным рассматривать реальную береговую линию как кривую, включающую в себя два пороговых масштаба. Внешним порогом Ω можно считать диаметр наименьшей окружности, описывающей остров или материк, а в качестве внутреннего порога ε мы можем взять те самые 20 м, о которых говорилось в главе 5. Весьма сложно указать реальные числовые значения для порогов, однако необходимость введения этих самых порогов не подлежит сомнению.

И все же даже после того, как мы отбросили самые крупные и самые мелкие детали, величина D продолжает означать эффективную размерность в том виде, в каком она описана в главе 3. Строго говоря, и треугольник, и звезда Давида, и конечные терагоны Коха имеют размерность 1. Однако — как с интуитивной, так и с прагматической точки зрения, руководствующейся простотой и естественностью необходимых поправочных членов — разумнее рассматривать терагон Коха на одной из поздних стадий построения как фигуру, более близкую к кривой с размерностью ln4/ln3, нежели к кривой с размерностью 1.

Что же касается береговой линии, то она, вероятнее всего, имеет несколько различных размерностей (вспомните клубок ниток из третьей главы). Ее географической размерностью является показатель Ричардсона D. Но в диапазоне размеров, которыми занимается физика, размерность береговой линии может быть совсем иной — связанной с понятием границы раздела между водой, воздухом и песком.

АЛЬТЕРНАТИВНЫЕ ГЕНЕРАТОРЫ КОХА И КРИВЫЕ КОХА БЕЗ САМОПЕРЕСЕЧЕНИЙ

Сформулируем еще раз основной принцип построения троичной кривой Коха. Построение начинается с двух фигур: инициатора и генератора. Последний представляет собой ориентированную ломаную, состоящую из N равных отрезков длины r. В начале каждого этапа построения мы имеем некоторую ломаную; сам этап заключается в замене каждого прямого участка копией генератора, уменьшенной и смещенной так, чтобы ее концевые точки совпали с концевыми точками заменяемого отрезка. На каждом этапе D=lnN/ln(1/r).

Нетрудно изменить общий вид получаемой конструкции путем модификации генератора; особенно интересны сочетания выступов и впадин — примеры можно найти на следующих после главы иллюстрациях. Таким образом, можно получить различные терагоны Коха, сходящиеся к кривым, размерности которых находятся в интервале от 1 до 2.

Все эти кривые Коха нигде не пересекают сами себя, поэтому при определении D их можно без какой бы то ни было неоднозначности делить на непересекающиеся части. Однако если при построении кривой Коха использовать небрежно подобранные генераторы, существует известный риск получить самокасание или самопересечение, а то и самоперекрытие. Если желаемое значение D достаточно мало, то тщательным подбором генератора можно легко избежать появления двойных точек. Задача резко усложняется при увеличении D, однако пока значение D остается меньше 2, решение существует.

Если же попытаться получить с помощью вышеописанного построения кривую Коха с размерностью больше 2, то мы неизбежно придем к кривым, которые покрывают плоскость бесконечно много раз. Случай D=2 заслуживает особого рассмотрения, и мы займемся им в главе 7.

ДУГИ И ПОЛУПРЯМЫЕ КОХА

В некоторых случаях возникает необходимость в педантичной замене термина «кривая Коха» чем-нибудь более точным и подходящим. Например, фигура, изображенная на рис. 73 внизу, формально является коховым отображением отрезка прямой и может быть названа дугой Коха. Как следствие, граничная линия на рис. 74 оказывается составленной из трех дуг Коха. Часто бывает полезно экстраполировать дугу в полупрямую Коха — экстраполяция увеличивает исходную дугу сначала в 1/r=3 раза, используя ее левую концевую точку как фокус, затем в 32 раз и т. д. Результат каждой следующей экстраполяции включает в себя предыдущую кривую, и получающаяся в пределе кривая содержит все промежуточные конечные кривые.

ЗАВИСИМОСТЬ МЕРЫ ОТ РАДИУСА ПРИ ДРОБНОМ ЗНАЧЕНИИ D

Рассмотрим еще одну стандартную ситуацию евклидовой геометрии и обобщим ее с учетом фрактальных размерностей. В случае идеальных однородных физических объектов плотности ρ мы можем считать, что масса M(R) стержня длиной 2R, диска или шара радиуса R пропорциональна ρRE. При E = 1,2 и 3 коэффициенты пропорциональности соответственно равны 2, и 4π/3.

Правило M(R)∝RD применимо и к фракталам, при условии, что они самоподобны.

В случае троичных кривых Коха это утверждение доказывается проще всего, если начало координат совпадает с концевой точкой полупрямой Коха. Если круг радиуса R0=3k (где k≥0) содержит массу M(R0), то круг радиуса R=R0/3 вместит в себя массу M(R)=M(R0)/4. Отсюда

M(R)=M(R0)(R/R0)D=[M(R0)R0−D]RD.

Следовательно, отношение M(R)/RD не зависит от радиуса R и может послужить для определения плотности ρ.

ДВИЖЕНИЕ КОХА

Представьте себе точку, движущуюся вдоль полупрямой Коха и проходящую за одинаковые интервалы времени дуги одинаковой меры. Если теперь обратить функцию, определяющую время как зависимость от положения точки, то мы получим функцию, определяющую положение точки как зависимость от времени, т. е. функцию движения. Скорость такого движения, разумеется, бесконечна.

СЛУЧАЙНЫЕ БЕРЕГОВЫЕ ЛИНИИ: ПРЕДВАРИТЕЛЬНЫЙ ВЗГЛЯД

Кривая Коха похожа на настоящие береговые линии, однако она имеет кое-какие существенные недостатки (эти недостатки практически в неизменном виде присущи всем ранним моделям рассматриваемых в настоящем эссе прецедентов). Ее части идентичны одна другой, а коэффициент само подобия r непременно задается жесткой шкалой вида b−k, где b — целое число, т. е. r=1/3, (1/3)2 и т.д. Таким образом, кривую Коха можно считать лишь очень предварительной моделью береговой линии.

Я разработал несколько способов избавления от этих недостатков, однако ни один из них не обходится без известных вероятностных усложнений, с которыми нам на данный момент не справиться: сначала следует уладить множество вопросов, касающихся неслучайных фракталов. Интересующемуся же читателю, знакомому с теорией вероятности, ничто не мешает заглянуть немного вперед и полюбоваться на модели, основанные на моих «сквиг-кривых» (см. главу 24) и, что более важно, на линиях уровня дробных броуновских поверхностей (см. главу 28).

Здесь и далее я использую следующий способ представления материала. Многочисленные узоры, создаваемые Природой, рассматриваются на фоне упорядоченных фракталов, которые могут служить пусть и очень приблизительными, но все же моделями рассматриваемых феноменов, тогда как предлагаемые мною случайные модели отнесены в более поздние главы.

Памятка. Во всех случаях, когда значение D известно точно, не является целым числом и записано в десятичной форме с целью облегчения сравнений, в нем сохраняются четыре знака после запятой. Число 4 было выбрано исходя из следующих соображений: я хотел показать, что в данном случае значение D не является ни эмпирическим (все эмпирические значения в настоящее время известны с точностью до одного или двух десятичных знаков), ни не вполне определенным геометрическим значением (все подобные значения в настоящее время известны либо с точностью до одного-двух десятичных знаков, либо с точностью до шести десятичных знаков).

СЛОЖНОЕ ИЛИ ВСЕ ЖЕ ПРОСТОЕ И ПРАВИЛЬНОЕ?

Кривые Коха демонстрируют новое и весьма интересное сочетание простоты и сложности. На первый взгляд они выглядят гораздо более сложными, чем любая стандартная евклидова кривая. Однако теория математических алгоритмов Колмогорова-Чайтина утверждает обратное: кривая Коха ничуть не сложнее окружности! Эта теория оперирует некоторым набором «букв» или «атомных операций», причем длина кратчайшего известного алгоритма построения искомой функции принимается за объективный верхний предел сложности этой функции.

Попробуем применить вышеописанный подход к построению кривых. Условимся изображать буквы или «атомы» графического процесса прямыми «штрихами». При использовании такого алфавита построение правильного многоугольника требует конечного числа штрихов, каждый из которых можно описать с помощью конечного числа инструкций, и, как следствие, является задачей конечной сложности. В построении же окружности, напротив, участвует «бесконечное количество бесконечно коротких штрихов», и поэтому окружность представляется нам как кривая бесконечной сложности. Однако если производить построение окружности рекурсивно, можно видеть, что необходимо лишь конечное число инструкций, и значит построение окружности также является задачей конечной сложности. Начнем, например, с правильного многоугольника, число сторон которого равно 2m (m>2), затем заменим каждый штрих длины 2sin(π/2m) двумя штрихами длины 2sin(π/2m+1); далее процесс повторяется снова и снова. Для построения кривых Коха применяется тот же подход, но с использованием более простых операций: длину каждого штриха нужно всего лишь умножить на r, причем относительное расположение штрихов остается неизменным на протяжении всего построения. Отсюда и следует парадоксальное заявление: когда сложность определяется длиной лучшего на настоящий момент алгоритма, выраженного средствами данного алфавита, кривая Коха оказывается проще окружности.

Это необычное распределение кривых по относительной сложности их построения не следует принимать всерьез. Самое интересное, что, используя алфавит, основанный на окружности и линейке (т. е. взяв в качестве «атома» окружность), мы придем к противоположному выводу. И все же, при разумно подобранном алфавите, любая кривая Коха не только имеет конечную сложность, но оказывается проще большинства евклидовых кривых.

Меня всегда зачаровывала этимология слов, и поэтому я не могу завершить эту главу, не сознавшись в том, что мне претит называть кривую Коха «неправильной». Этот термин родственен слову править и в принципе вполне приемлем, если понимать это слово как «делать правильным, выпрямлять»: кривую Коха вряд ли что-либо способно выпрямить. Однако вспоминая о другом смысле слова править и размышляя о правителях или королях (тот же смысл, но несколько иная этимология. Кстати, латинские слова rex («король») и regula («правило») также имеют один корень), т. е. о тех, кто устанавливает свод незыблемых правил, которым следует беспрекословно подчиняться, я всякий раз молча протестую против неудачного термина — в этом смысле в мире просто нет ничего «правильнее» кривой Коха.

Рис. 70. ТРОИЧНЫЙ ОСТРОВ (ИЛИ СНЕЖИНКА) КОХА K. ПЕРВОНАЧАЛЬНОЕ ПОСТРОЕНИЕ ХЕЛЬГЕ ФОН КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=ln4/ln3~1,2618)


Начинается построение с «инициатора», т. е. с черного равностороннего треугольника, длина стороны которого равна единице. Затем в средней трети каждой из сторон строим по равностороннему треугольнику с длиной сторон, равной 1/3. На этом этапе мы получаем шестиконечную звезду, или звезду Давида. На каждой из сторон полученной звезды строим вышеописанным образом по равностороннему треугольнику и повторяем процесс до бесконечности.

Точки средней трети любого из отрезков при каждом добавлении смещаются в перпендикулярном направлении, в то время как вершины треугольного инициатора остаются неподвижными. Остальные девять вершин звезды Давида достигают своих окончательных положений после конечного числа этапов. Некоторые точки смещаются бесконечное число раз, но каждый раз на меньшую величину, и в конце концов сходятся к неким пределам, которые и определяют форму береговой линии.

Сам остров представляет собой предел последовательности областей, ограниченных многоугольниками, каждый из которых содержит область, ограниченную предыдущим многоугольником. Фотографический негатив такого предела можно увидеть на рис. 74.

Обратите внимание на то, что и на этом, и на многих других рисунках чаще изображены не береговые линии, а острова и озера — вообще, «сплошным» фигурам явно отдается предпочтение перед контурами. Объясняется это очень просто — мы всего лишь пытались максимально эффективно использовать высокую разрешающую способность нашей графической системы.

Почему к данной кривой нельзя провести касательную? Выберем в качестве неподвижной точки одну из вершин исходного треугольника и проведем прямую до некоторой точки, расположенной на предельной кривой, в направлении по часовой стрелке. По мере того, как выбранная точка на кривой приближается к нашей вершине, соединяющая их прямая колеблется внутри угла в 30 градусов и совершенно не желает устремляться к какому бы то ни было пределу, который мы могли бы назвать касательной в направлении по часовой стрелке. Касательная в направлении против часовой стрелки также не определена. Точка, к которой нельзя провести касательную, поскольку опущенные из нее хорды колеблются под вполне определенными углами, называется гиперболической точкой. Что касается тех точек, к которым кривая K стремится асимптотически, то к ним также нельзя провести касательную, но по другой причине.

Рис. 71. ТРОИЧНЫЙ ОСТРОВ (ИЛИ СНЕЖИНКА) КОХА К. АЛЬТЕРНАТИВНОЕ ПОСТРОЕНИЕ ЭРНЕСТА ЧЕЗАРО (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=ln4/ln3~1,2618)


Альтернативное построение острова Коха предложено в статье Чезаро, посвященной кривым фон Коха [74] — работе настолько замечательной, что всякий раз, открывая журнал, я забываю о том, как долго и упорно я искал эту статью (и как разозлился, обнаружив впоследствии, что все мои труды были напрасны — мне следовало сразу же заглянуть в сборник [75]). Позволю себе привести несколько особенно восхитительных строк в моем вольном переводе. «Бесконечное вложение этой фигуры в самоё себя дает нам некоторое представление о том, что Теннисон однажды назвал внутренней бесконечностью — единственный, в сущности, род бесконечности, доступный нашему восприятию Природы. Благодаря такому подобию между целым и частями — вплоть до самых мельчайших, исчезающе малых частей — кривая Коха обретает воистину чудесные свойства. Если бы ей была дарована жизнь, то для того, чтобы убить ее, нам пришлось бы уничтожить всю кривую без остатка, ибо она возрождалась бы вновь и вновь из глубин своих треугольников; то же, впрочем, можно сказать и о жизни во Вселенной вообще».

В роли инициатора в построении Чезаро выступает правильный шестиугольник с длиной стороны √3/3. Окружающий остров океан изображен серым цветом. Каждый прямолинейный участок берега заменяется треугольной бухтой, размер которой уменьшается с каждым этапом построения до бесконечности, а остров Коха становится пределом уменьшающихся приближений.

На приведенном рисунке показаны оба метода построения: и метод Коха (см. рис. 70) и только что описанный метод Чезаро. При таком представлении предельная береговая линия Коха оказывается зажатой между двумя неуклонно приближающимися изнутри и снаружи терагонами. Можно вообразить себе некий каскадный процесс, в начале которого мы имеем три концентрических кольца: твердая земля (черная), болото (белое) и вода (серая). С каждым этапом такого каскадного процесса некоторый участок болота преобразуется либо в твердую землю, либо в воду. В пределе болото донельзя истончается, превращаясь из «поверхности» в кривую.

Интерпретация срединного смещения. Используем приведенные ниже генератор и последующий шаг (угол равен 120 градусов):

Смещение средней точки прямолинейного отрезка наружу k-го внутреннего терагона дает k-й наружный терагон; срединное смещение внутрь k-го наружного терагона дает k+1-й наружный терагон. Эффективность такого подхода демонстрируется на рис. 98 и 99, а также в главе 25.

Рис. 73. ДВА ВИДА САМОПОДОБИЯ: СТАНДАРТНОЕ И ФРАКТАЛЬНОЕ


На рисунке показано, как, располагая некоторым целым числом (в данном случае b = 5), можно разбить прямолинейный отрезок единичной длины на N=b подынтервалов, длина каждого из которых равна r=1/b. Аналогичным образом мы можем разделить единичный квадрат на N=b2 меньших квадратов с длиной стороны r=1/b. И в том, и в другом случае величина lnN/ln(1/r) представляет собой размерность подобия рассматриваемой фигуры, — величина, о которой школьная геометрия не считает нужным упоминать, так как ее значение сводится к евклидовой размерности.

Нижняя фигура — это троичная кривая Коха или треть побережья острова Коха. Ее также можно разбить на подобные исходной кривой фигуры меньшего размера, при этом N=4, а r=1/3. Размерность подобия D=lnN/ln(1/r) в данном случае оказывается дробным числом (ее значение примерно 1,2618), не находя себе аналогов в стандартной геометрии.

Хаусдорф показал, что величина D может быть весьма полезной в математике и что она совпадает с хаусдорфовой, или фрактальной, размерностью. Я же утверждаю, что без величины D не обойтись и в естественных науках.

Рис. 74. ТРОИЧНОЕ ОЗЕРО КОХА К (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=ln4/ln3~1,2618)


Продолжим построение, описанное в пояснениях к рисункам 70 и 71, до некоторого продвинутого этапа и сфотографируем результат. Негатив такой фотографии представлен на рисунке и напоминает скорее озеро, нежели остров.

Необычный узор серых «волн», заполняющих это озеро, не случаен. Его описание можно найти в пояснениях к рисункам 104 и 105.

Береговая линия озера Коха не самоподобна, поскольку замкнутую кривую нельзя представить в виде совокупности подобных ей меньших замкнутых кривых. < Хотя в главе 13 мы используем самоподобие для построения бесконечного скопления островов. ►

Рис. 75 и 76. ДРУГИЕ ОСТРОВА И ОЗЕРО КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИD=ln9/ln7~1,1291)


Этим вариантом острова Коха мы обязаны В. Госперу (см. [163]): инициатором служит правильный шестиугольник, а генератор выглядит следующим образом:

Рис. 75. Здесь приведено несколько этапов построения «острова Госпера» (показан жирной линией). О внутреннем заполнении острова (тонкая линия) мы поговорим чуть позже (см. рис. 106).

Рис. 76. Одна из поздних стадий построения острова Госпера. За пояснениями относительно заполнения (линии различной толщины внутри острова) обратитесь к рис. 106.

Заметьте, что в отличие от исходной кривой Коха, этот генератор симметричен относительно своего центра. Он совмещает в себе бухты и полуострова таким образом, что площадь острова на протяжении всего построения остается неизменной. То же верно и для кривых Коха (вплоть до рис. 88).

Тайлинг. Островами Госпера можно полностью, без просветов, покрыть плоскость. Эта процедура называется покрытием, или тайлингом}

Пертайлинг. Более того, этот остров самоподобен, в чем легко убедиться, взглянув на области на рисунке, заштрихованные линиями разной толщины. То есть каждый остров можно разделить на семь «провинций», каждая из которых может быть получена из целого острова преобразованием подобия с коэффициентом r=1/√7. Для обозначения покрытия плоскости с помощью таких самоподобных плиток я предлагаю ввести новый термин пертайлинг (латинская приставка per- служит здесь для выражения совершенства и всеохватности процесса).

В большинстве случаев покрытия плоскости плитку нельзя разделить на какое-либо количество меньших плиток, подобных исходной. Многих, например, чрезвычайно раздражает, что сложенные вместе правильные шестиугольники не образуют столь же правильного большего шестиугольника. Из плиток Госпера вполне можно «состряпать» достаточно близкое подобие шестиугольника, способное точно разделиться на семь одинаковых частей. Другие фрактальные плитки позволяют осуществить деление на другое количество частей.

Франция. Среди географических реалий есть одна фигура удивительно правильной формы, часто называемая за свою правильность Шестиугольником. Речь идет о Франции. Надо сказать, что фигура, символизирующая на географической карте Францию, гораздо меньше напоминает шестиугольник, нежели фигуру, изображенную на рис. 76 (хотя Бретань на нашем рисунке выглядит, пожалуй, несколько недокормленной).

< Почему нельзя провести касательную ни в одной точке этой береговой линии? Выберите неподвижную точку на береговой линии, полученной после некоторого конечного числа этапов построения, и соедините эту точку прямой линией с некоторой движущейся точкой предельной береговой линии. По мере того, как движущаяся точка приближается к неподвижной точке вдоль предельной береговой линии (неважно, справа или слева), соединяющая точки прямая постоянно меняет направление. Такая неподвижная точка называется локсодромной точкой. ►

Рис. 79. ПРОЧИЕ ОСТРОВА И ОЗЕРА КОХА (РАЗМЕРНОСТИ БЕРЕГОВЫХ ЛИНИЙ ОТ 1 ДО D=ln3/ln√5~1,3652)


В данной последовательности фрактальных кривых инициатором выступает правильный многоугольник с числом сторон M генератор таков, что N=3, а углы между его первым и вторым и вторым и третьим отрезками совпадают и равны θ=2π/M. На рис. 75 и 76 M=6 (здесь этой фигуры нет), а кривая с M=3 обсуждается в пояснении к рис. 109. На данном рисунке изображены поздние стадии построения терагонов для значений M = 4, 8, 16 и 32 в виде вложенных друг в друга озер и островов. Например, значению M=4 соответствует следующий генератор:

Штриховка внутри центрального острова (M=4) описана в пояснении к рис. 109 и 110.

Если параметр M уходит в бесконечность, соответствующая кривая стремится приобрести форму окружности. Если же M уменьшается, то наши фигуры начинают «съеживаться», сначала постепенно, затем — резкими скачками. Когда M достигает 3, в соответствующей кривой появляются самопересечения. Этот случай мы обсудим позже (см. рис. 109 и 110).

Критическая размерность. Когда в качестве инициатора выбирается отрезок [0, 1], угол θ может принимать любые значения от 180 градусов до 60 градусов. Существует, однако, некий критический угол θkp — такой, что береговая линия не имеет самопересечений в том и только в том случае, если θ>θkp. Соответствующая размерность Dkp называется критической размерностью для самопересечений. Угол θkp близок к 60 градусам.

Обобщение. Построения, изображенные на рис. 75-88, допускают следующее несложное обобщение. Назовем приведенные на рисунке генераторы прямыми (S) и определим обратный генератор (F) как зеркальное отражение прямого генератора относительно линии y=0. На каждом отдельном этапе построения будем использовать один генератор, однако для различных этапов можно выбирать различные генераторы. Кривые на указанных (и некоторых последующих) рисунках построены с помощью S-генераторов, но и другие бесконечные последовательности S- и F-генераторов дают очень похожие результаты.

< При чередовании F- и S-генераторов локсодромические точки переходят в гиперболические, как в оригинальной кривой Коха. ►

На рис. 79-85 показано несколько фигур Коха, инициатором которых является квадрат (отсюда и название квадратичные). Одним из преимуществ таких построений является то, что с ними можно экспериментировать даже на слабых графических системах. < Еще одно преимущество — квадратичные фрактальные кривые ведут непосредственно к оригинальной кривой Пеано, описанной в пояснении к рис. 95. ►

Рис. 81. Инициатором здесь служит квадрат, а генератор выглядит следующим образом:

Как и на рис. 75-79, на каждом этапе построения общая площадь острова остается неизменной. На рис. 81 вверху приведены два первых этапа построения крупным планом и два последующих в более мелком масштабе.

Результат последнего этапа, еще более увеличенный, демонстрирует мельчайшие детали в виде очень тонких, едва видимых выступов, которых вы, конечно же, не увидели бы, не обладай наша графическая система такой превосходной разрешающей способностью.

Как в терагонах, так и в предельной кривой отсутствует какое бы то ни было самоперекрытие, самопересечение или самокасание. Это утверждение остается в силе и для последующих построений (вплоть до рис. 85).

< Не следует забывать о том, что фракталы на рис. 81-85 представляют береговые линии; суша и море здесь — это удобные фигуры, обладающие положительными и конечными площадями. На с. 209 упоминается случай, в котором только «море», будучи объединением простых трем, имеет вполне определенную площадь, в то время как суша не имеет ни единой внутренней точки. ►

Тайлинг и пертайлинг. Этот остров можно разбить на 16 меньших островков (r=1/4). Каждый представляет собой остров Коха, построенный на одном из 16 квадратов, образующих первый этап построения.

< В главах 25 и 29 показано, что размерность D=3/2 характерна также для многих броуновских функций. Следовательно, это значение легко можно получить с помощью случайных кривых и поверхностей. ►

Рис. 81. КВАДРАТИЧНЫЙ ОСТРОВ КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=3/2=1,5000)


В качестве инициатора снова возьмем квадрат, а генератором будет следующая ломаная:

То, что береговая линия квадратичных островов Коха, представленных в данной подборке иллюстраций, в очень значительной степени зависит от D, весьма показательно. В то же время, поскольку их общим инициатором является квадрат, внешняя форма этих островов остается приблизительно одинаковой. Если инициатором выступает какой-либо другой правильный M-угольник (M>4), то можно наблюдать, как по мере увеличения M внешняя форма становится все более гладкой. Об истинной зависимости между внешней формой и значением D мы узнаем не раньше, чем в главе 28, в которой рассматриваются случайные береговые линии, эффективно определяющие как генератор, так и инициатор.

< Максимальность. Свой вклад в сходство внешних форм вносит тот факт, что изображенные на рис. 79-85 квадратичные кривые Коха обладают весьма интересным свойством максимальности. Расположим все генераторы Коха, порождающие кривые без самопересечений, на квадратной решетке, образованной прямыми, параллельными и перпендикулярными отрезку [0, 1]. Допустим также, что все эти генераторы можно использовать с любыми инициаторами на нашей квадратной решетке. Определим как максимальные те генераторы, которые характеризуются наибольшим значением N и, как следствие, D. Нетрудно заметить, что Nmax=b2/2 при четных b и Nmax=(b2+1)/2 при нечетных b.

При увеличении b возрастает как максимальное значение N, так и число альтернативных максимальных многоугольников. Таким образом, на предельную кривую Коха все большее влияние оказывает исходный генератор. Кроме того, кривая выглядит все более изощренной, поскольку стремление достичь максимальной размерности, избежав при этом самопересечения, налагает определенные требования, которые лишь ужесточаются с ростом D. Этот процесс достигает кульминации в следующей главе, вместе с пределом Пеано D=2.

Лакунарность. Фрактальные кривые с одинаковой размерностью D, но разными значениями N и r могут качественно отличаться одна от другой. Ответственный за это параметр, отличный от D, обсуждается в главе 34. ►

Рис. 83. КВАДРАТИЧНЫЙ ОСТРОВ КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=ln18/ln6~1,6131)


На этих рисунках изображены те же конструкции, что и на рис. 79, только с другими генераторами. Вот так выглядит генератор для кривой на рис. 85:

а так — для кривой на рис. 84:

Дамбы и каналы этих лоцманских кошмаров становятся все уже по мере того, как мы продвигаемся по направлению к самым дальним мысам полуостровов или самым врезающимся в сушу языкам бухт. Вдобавок ко всему, стремление к сужению наблюдается и по мере роста фрактальной размерности, причем при D~5/3 у этих дамб и каналов появляются «осиные талии».

< О турбулентной дисперсии. На мой взгляд, между последовательностью приближений фрактальных кривых, изображенных на рис. 85, и последовательными стадиями турбулентной дисперсии чернил в воде существует поразительное сходство. Разумеется, реальная дисперсия несколько менее упорядочена, однако это можно имитировать, введя в процесс построения элемент случайности.

Можно сказать, что здесь мы наблюдаем ричардсонов каскад «в деле». Исходная малая толика энергии размазывает квадратное пятно чернил по поверхности воды. Затем первоначальное завихрение расщепляется на меньшие завихрения, воздействие которых носит более локальный характер. Исходная энергия разделяется на все уменьшающиеся порции, пока в конце концов не остается ничего, кроме легкой размытости контуров образовавшегося в результате пятна, как показано на приведенной ниже иллюстрации, позаимствованной из работы Коррсина [87].

Рис. 84 и 85. КВАДРАТИЧНЫЕ ОСТРОВА КОХА (РАЗМЕРНОСТИ БЕРЕГОВЫХ ЛИНИЙ D=5/3~1,6667 И D=ln98/ln14~1,7373)


То, что ричардсонов каскад порождает фигуру, ограниченную фрактальной кривой, несомненно. А вот с выводом о том, что ее размерность D=5/3, спешить не стоит. Это значение D соответствует плоским срезам пространственных поверхностей с размерностью D=8/3, какие часто встречаются в турбулентности. В случае изоповерхностей скалярных величин (рассматриваемых в главе 30) размерность D=8/3 можно объяснить в рамках теории Колмогорова. И все же я бы не стал доверять нумерологическим аналогиям.

В сущности, значение D зависит, скорее всего, от начальной энергии жидкости и от размера сосуда, в котором имеет место дисперсия. При низкой начальной энергии из круглого пятна получится кривая с размерностью D, близкой к 1 (см. рис. 79). При высокой начальной энергии, да еще в маленьком сосуде, можно будет наблюдать более сложную дисперсионную картину, плоские срезы которой будут больше похожи на рис. 84 (D~1,7373); их размерность может даже достичь значения D=2 (см. главу 8). См. также работу [386].

Если последнее заключение верно, следующим шагом необходимо изучить связь между начальной энергией и D и отыскать наименьшее значение энергии, при котором плоский срез пятна имеет D=2 (или D=3 в пространственном случае). Исследовав предельный случай D=2 (см. главу 7), мы убедимся, что он качественно отличается от случая D<2, так как позволяет любым двум частицам чернил, которые в начале процесса были далеко друг от друга, прийти в асимптотическое соприкосновение. <Я бы совсем не удивился, если бы оказалось, что за одним термином «турбулентная дисперсия» скрываются два совершенно отличных друг от друга феномена. ►

Постскриптум. Уже после того, как эта иллюстрация появилась во «Фракталах» 1977 г., Пол Димотакис сфотографировал тонкие срезы турбулентной струи, рассеивающейся в ламинарной среде. Сходство снимков с иллюстрацией весьма меня порадовало. ►

Рис. 87 и 88. ОБОБЩЕННЫЕ КРИВЫЕ КОХА И САМОПОДОБИЕ С НЕРАВНЫМИ КОЭФФИЦИЕНТАМИ (D~1,4490,D~1,8797,D~1+ε)


При построении этих конструкций использован метод Коха, но с неравными длинами сторон rm генератора. До сих пор мы подразумевали, что ко всем N «частям», на которые делится наше «целое», применяется один и тот же коэффициент подобия r. При неравных коэффициентах rm кривая Коха несколько теряет в своей неумолимой правильности. На рис. 87 вы можете видеть модифицированную таким образом троичную кривую Коха.

Заметьте, что во всей предшествующей серии иллюстраций построение кривой продолжалось до тех пор, пока не достигало мельчайших деталей заранее определенного размера. Когда rm=r, искомая цель достигается за некоторое заранее определенное число этапов построения, здесь же необходимое число этапов оказывается переменным.

Теперь перед нами стоит задача распространить на данное обобщение рекурсии Коха концепцию размерности подобия. Предположим для начала, что некая стандартная евклидова фигура покрывается подобными ей частями, уменьшенными соответственно в rm раз. При D=1 значение rm должно удовлетворять равенству Σrm=1; в общем случае евклидовы фигуры требуют равенства ∑rmD=1. Далее, для случая фрактальных кривых, которые могут быть разделены на равные части, уже знакомое нам условие NrD=1 также можно переписать как ∑rmD=1. Исходя из этих соображений, мы можем построить ренерирующую размерность функцию G(D)=∑rmDи определить D как ее единственный действительный корень при G(D)=1. Остается выяснить, совпадает ли наша размерность D с размерностью Хаусдорфа-Безиковича. Да, совпадает — по крайней мере, во всех случаях, о которых мне известно.

Примеры. Размерность D кривой, представленной на рис. 87, несколько превышает размерность оригинальной кривой Коха ln4/ln3. Размерность D кривой, изображенной на рис. 88 вверху, немного не достигает 2. При D→2 береговая линия этого острова стремится к кривой Пеано-Пойа, одной из кривых Пеано, рассматриваемых в следующей главе. Сходство между этой фигурой и рядом деревьев не случайно, как будет показано в главе 17. Наконец, кривая на рис. 88 внизу имеет размерность D лишь чуть больше 1.

7 ПОКОРЕНИЕ ЧУДОВИЩНЫХ КРИВЫХ ПЕАНО

Обсуждая в предыдущей главе обобщенные кривые Коха без самопересечений, мы не случайно ограничились значениями D<2. Когда размерность D достигает 2, фрактальные кривые претерпевают значительные качественные изменения.


Будем исходить из предположения, что терагоны не имеют самопересечений, хотя самокасание допускается. В этом случае одним из признаков достижения размерности D=2 можно считать то, что точки самокасания становятся асимптотически неизбежными. Главным же признаком является неизбежность заполнения предельной кривой некоторой «области» плоскости, т. е. некоторого множества, состоящего из дисков (заполненных окружностей).

Это двойственное заключение не является следствием пока еще поправимой нехватки воображения со стороны математиков. Оно проистекает из одного фундаментального принципа, сыгравшего центральную роль в кризисе математики 1875 - 1925 гг.

«КРИВЫЕ» ПЕАНО, ДВИЖЕНИЯ И ПРОХОЖДЕНИЯ

Упомянутые предельные кривые, представленные на иллюстрациях в конце главы, называются кривыми Пеано, поскольку первая из них была построена Пеано в 1890 г. [465]. Их также называют заполняющими плоскость. Для таких кривых остается справедливым формальное определение размерности lnN/ln(1/r)=2, хотя и не из тех соображений, из каких нам хотелось бы. С математической точки зрения, кривая Пеано — всего лишь несколько необычное представление области или участка плоскости, а все классические определения единодушны в том, что размерность такого участка равна 2. Иными словами, человеку благоразумному следует избегать употребления термина кривая, заполняющая плоскость.

К счастью, большая часть «кривых» Пеано, включая и полученные путем рекурсивного построения Коха, поддается естественной параметризации с помощью скалярной величины t, которую можно назвать «временем». Имея дело с такими кривыми, мы вполне можем (не опасаясь ревнителей математической строгости) использовать термины «движения Пеано», «заполняющие плоскость движения», «движения, проходящие по всем плиткам» или просто «прохождения по плиткам» (о плитках и пертайлинге мы поговорим позже в этой же главе). И мы не замедлим воспользоваться этими терминами, когда наступит подходящий момент; хочу только напомнить, что жанр эссе, согласно своей специфике, ни в коей мере не подразумевает полного освещения того или иного вопроса.

КРИВЫЕ ПЕАНО В РОЛИ ЧУДОВИЩ

«Все шатается и рассыпается! Очень трудно передать словами тот эффект, который произвели результаты [Джузеппе] Пеано на все математическое сообщество. Такое ощущение, что кругом одни развалины, что все математические концепции внезапно потеряли всякий смысл» [573]. «[Движение Пеано] невозможно представить себе интуитивно; его можно понять лишь с помощью логического анализа» [190]. «Некоторые математические объекты — такие, например, как кривая Пеано — совершенно противоречат здравому смыслу... просто нелепы» [109].

ИСТИННАЯ ПРИРОДА КРИВЫХ ПЕАНО

Я утверждаю, что приведенные цитаты лишь доказывают тот факт, что ни один из тех математиков так и не удосужился тщательно рассмотреть аккуратно построенную кривую Пеано. Кто-нибудь менее добродушный мог бы сказать, что эти цитаты демонстрируют полное отсутствие геометрического воображения.

Я также утверждаю, что после внимательного и непредвзятого изучения и осмысления терагонов Пеано становится весьма затруднительным и дальше не видеть связи между ними и разнообразными природными проявлениями. Эта глава посвящена кривым без самопересечений, т. е. кривым, терагоны которых избегают самокасаний. В главе 13 мы поговорим о кривых с умеренным числом самокасаний. Первыми на предмет устранения самокасаний следует рассмотреть терагоны, заполняющие решетку (например, прямые с целочисленными координатами, параллельные координатным осям).

РЕКИ И ДРЕВОВИДНАЯ СТРУКТУРА ВОДОРАЗДЕЛОВ

Изучая всевозможные терагоны Пеано, я обратил внимание на то, что каждый из них представляет собой некоторую комбинацию из двух деревьев (или двух скоплений деревьев), допуская бесконечное разнообразие конкретных интерпретаций. Особенно хорошо эти деревья видны на «прохождении снежинки» — кривой Пеано моего изобретения (см. рис. 105). Глядя на рисунок, мы легко можем представить себе, что там изображено, скажем, скопление кустарников, растущих из нижней трети снежинки Коха и взбирающихся по ее стенкам. Другому эта картинка может показаться похожей на нарисованную плохо очиненным карандашом карту бассейна какой-нибудь большой реки — многочисленные мелкие притоки сливаются в более крупные и в конце концов вливаются в главную реку, протекающую вдоль нижней трети снежинки. Из последней интерпретации немедленно следует, что кривые, отделяющие реки друг от друга, составляют в совокупности древовидный водораздел. Разумеется, реки и водоразделы могут меняться местами.

Какой бы простой и очевидной ни казалась эта новая водораздельно- речная аналогия, она оказалась возможной только после того, как мы перестали считать кривые Пеано чем-то заведомо патологическим. В самом деле, если мы хотим, чтобы древовидная структура, составленная из рек исчезающей ширины, собрала всю воду с некоторого участка, ей просто не остается ничего другого, как проникнуть во все точки этого участка. Всякий, кто отправится прогуляться по берегам всех рек данной системы, совершит заполняющее плоскость путешествие. Не верите? Спросите у любого ребенка!

Вооружившись интуицией, подкрепленной рис. 104, мы с легкостью обнаружим аналогичные сопряженные конструкции во всех тера- гонах Пеано. Даже грубый остров с рис. 95 приобретает в этом свете некое осмысленное содержание. Пронизывающие его тонкие ленты воды нельзя принять за фьорды, как бы мы ни напрягали наше воображение, однако их вполне можно рассматривать как речную систему.

Когда из изучения рек вырастет настоящая наука, ее следует назвать потамологией — термин, созданный Морисом Парде. Однако, по трезвом размышлении, приходится признать, что изучение рек — это лишь часть более общей науки о воде, гидрологии, во владения которой на протяжении этого эссе мы еще не раз наведаемся.

НЕИЗБЕЖНЫЕ КРАТНЫЕ ТОЧКИ ДЕРЕВЬЕВ И, КАК СЛЕДСТВИЕ, ДВИЖЕНИЙ ПЕАНО

Неожиданно находят очевидное объяснение и многие математические свойства кривых Пеано. Чтобы объяснить кратные точки, предположим, что некто начинает движение вдоль берега реки, являющейся частью дерева рек Пеано, и движется вверх или вниз по течению, обходя даже самые маленькие притоки (причем чем уже приток, тем быстрее движение). Очевидно, что в конечном счете наш путешественник придет в точку, которая находится на другом берегу напротив точки его отправления. А поскольку в пределе река бесконечно узка, то он по существу вернется в начальную точку. Таким образом, кратные точки на кривой Пеано представляются неизбежными не только с математически логической точки зрения, но и с позиций здравого смысла. Более того, эти точки всюду плотны.

Неизбежно также, что некоторые точки он посетит более чем дважды, так как в местах слияния рек совпадают по меньшей мере три береговых точки. Если все слияния ограничиваются только двумя реками, нет необходимости учитывать более чем тройную кратность. С другой стороны, если мы согласны иметь точки более высокой кратности, можно обойтись и без тройных точек.

Все утверждения, высказанные в предыдущих абзацах, доказаны, и, поскольку доказательства весьма деликатны и вызвали в свое время немало бурных дискуссий, сами свойства можно было бы, по всей видимости, отнести к «техническим подробностям». Если бы не одно «но». Кто теперь будет продолжать настаивать, что чисто логический подход к упомянутым свойствам имеет хоть какие-то преимущества перед моим интуитивным подходом, основанном на здравом смысле?

Как правило, реки Пеано представляют собой не стандартные фигуры, но фрактальные кривые. Это весьма удачно для нужд моделирования, так как все, что говорилось в главе 5 относительно неспрямляемости географических кривых, в полной мере касается и берегов рек. Больше того, среди приводимых Ричардсоном данных имеются сведения и о таких государственных границах, которые частично проходят по рекам и границам водоразделов. А в цитате из Штейнгауза [539] реки и вовсе упоминаются открытым текстом. Что касается водосборных бассейнов рек, то каждый из них может быть окружен замкнутой кривой, напоминающей береговую линию и составленной из участков границы водораздела. Бассейн любой крупной реки представляет собой совокупность бассейнов более мелких рек и притоков, вдоль и поперек исчерченную этими самыми реками и притоками, однако для исчерпывающего описания столь сложной на первый взгляд структуры нам необходимы всего лишь несколько заполняющих плоскость кривых, ограниченных кривыми фрактальными.

ДВИЖЕНИЕ ПЕАНО И ПЕРТАЙЛИНГ

Возьмем оригинальную кривую Пеано (см. рис. 95) и представим величину t как число в системе исчисления с основанием N=9 вида 0,τ12,... Значения времени с одинаковым первым «знаком» после запятой отобразятся на одну и ту же девятую часть исходного квадрата, значения с одинаковым вторым «знаком» отобразятся на одну и ту же восемьдесят первую (92) часть исходного квадрата и т. д. Таким образом, покрытие отрезка [0, 1] отображается на покрытие квадрата. Последовательные девятые доли линейных плиток отображаются на последовательные подплитки плоскости. А свойство отрезка, именуемое пертайлинг, т. е. рекурсивная и бесконечная разбиваемость на меньшие плитки, подобные целому отрезку [0, 1], отображается на аналогичное свойство квадрата. Различные движения Пеано, коими мы обязаны Э.Чезаро и Д. Пойа, отображают это свойство также и на всевозможные самоподобные покрытия треугольников.

В более общем смысле большинство движений Пеано порождают самоподобные покрытия плоскости. В простейшем случае существует некое основание N, и мы начинаем с линейного пертайлинга, заключающегося в последовательном разбиении целого на N-е доли. Однако прохождение снежинки, изображенное на рис. 104 и 105, подразумевает неравномерное разбиение интервала времени t [0, 1] сначала на четыре подынтервала длиной 1/9, затем на четыре подынтервала длиной 1/9√3, один — 1/9, два — 1/9√3 и два — 1/9.

ОБ ИЗМЕРЕНИИ РАССТОЯНИЯ ПЛОЩАДЬЮ

Движения Пеано нередко подразумевают весьма деликатные взаимоотношения между длиной и площадью, в которых эти понятия подчас меняются местами. Особенно характерно это для изометрического движения, т.е. такого, при котором временной интервал [t1,t2] отображается на площадь, равную длине |t1−t2| (Большинству движений Пеано присущи одновременно и изометрия, и пертайлинг, однако эти два понятия не следует смешивать.) Называя отображение временного интервала [t1,t2] плоским интервалом Пеано, мы подразумеваем, что вместо измерения расстояний через изменение значения времени, можно измерять их непосредственно на площади. Здесь, правда, возникает одна весьма существенная сложность — точки, расположенные напротив друг друга на разных берегах реки, совпадают в пространстве, но посещаются в разные моменты времени.

Определение «расстояния Пеано» может включать в себя только порядок посещений. Обозначим моменты первых посещений точек P1 и P2 через t'1 и t'2, а моменты последних посещений — через t''1 и t''2. Тогда левый интервал Пеано L{P1,P2} определяется как отображение интервала [t'1,t'2], а правый интервал Пеано R{P1,P2} — как отображение интервала [t"1,t"2]. Длины этих интервалов определяют левое и правое расстояния как |L{P1,P2}|=|t'1−t'2| и {R{P1,P2}|=|t"1−t"2|. Каждое из этих расстояний аддитивно, т. е. если расположить, скажем, три точки P1, P2 и P3 в порядке их первых посещений, то мы получим

|L{P1,P3}|=|L{P1,P2}|+|L{P2,P3}|.

Другие определения интервала и расстояния различают точки реки и точки водораздела. Обозначим через t' и t'' моменты первого и последнего посещения точки P. Точка P считается точкой реки, если отображение интервала [t',t"] ограничено этой точкой и кривыми водораздела. Последовательные посещения точки P располагаются друг против друга на противоположных берегах реки. Точка P считается точкой водораздела, если отображение интервала [t',t"] ограничено этой точкой и реками.

В случае, если кривая Пеано представлена как общая граница между деревом рек и деревом водоразделов, пути, соединяющие точки P1 и P2, расположенные на противоположных берегах реки (т. е. вдоль водораздела), включают в себя наикратчайший общий путь. Представляется разумным при измерении расстояния между точками P1 и P2следовать как раз этим путем. Если не считать некоторых исключений, размерность D как дерева рек, так и дерева водоразделов строго меньше 2 и строго больше 1. Следовательно, наикратчайший путь нельзя измерить ни длиной, ни площадью, однако в типичных случаях он имеет нетривиальную хаусдорфову протяженность в размерности D.

И еще. Очень важные дополнительные соображения относительно движений Пеано подробно изложены в пояснениях к нижеследующим рисункам.

Рис. 95. КВАДРАТИЧНОЕ ПОСТРОЕНИЕ КОХА С РАЗМЕРНОСТЬЮ D=2: ОРИГИНАЛЬНАЯ КРИВАЯ ПЕАНО, ПРОХОЖДЕНИЕ КВАДРАТА


Заполняющая плоскость кривая Пеано, представленная на этом рисунке, является оригинальной кривой Пеано. Невероятно краткий алгоритм Джузеппе Пеано был графически воплощен в работе Мура [435] (которая получила, пожалуй, чрезмерно высокую оценку во «Фракталах» 1977 г.). На нашем рисунке кривая Пеано развернута на 45 градусов — тем самым эта «блудная» конструкция оказывается возвращенной в лоно кривых Коха, т. е. теперь генератор всегда одинаково размещается на сторонах терагона, полученного на предыдущем этапе построения.

Инициатором здесь выступает единичный квадрат (черный внутри), а генератор выглядит следующим образом:

Поскольку генератор — самокасающаяся кривая, получаемые в результате построения конечные острова Коха представляют собой скопления черных квадратов, словно вырезанных из бесконечной шахматной доски. После n-го этапа построения терагон Коха выглядит как решетка из прямых с шагом r) = эта решетка заполняет квадрат, площадь которого равна 2, причем плотность линий быстро возрастает по мере того, как k→∞ (вполне достаточный пример этого однообразного узора показан на рисунке рядом с исходным черным квадратом).

На трех верхних картинках двусмысленность самокасаний устранена путем срезания соответствующих углов с сохранением общей площади.

Если четвертый этап построения данной кривой изобразить в том же масштабе, то мы увидим лишь сплошной серый фон, однако увеличенное изображение одной четвертой части, получающейся в результате береговой линии, вполне можно проследить взглядом (рискуя, правда, заработать при этом морскую болезнь). Глядя на этот рисунок, понимаешь, что люди имеют в виду, когда говорят, что предельная кривая Коха заполняет плоскость.

Было бы замечательно, если бы мы смогли определить в этом случае предельный остров по аналогии с островами Коха в главе 6, однако здесь это, к сожалению, невозможно. Любая выбранная наугад точка почти наверняка будет бесконечно колебаться между сушей и морем. Терагоны на поздних этапах построения пронизаны бухтами или реками настолько глубоко и однородно, что суша и вода делят любой квадрат среднего размера x (такого, что η≤x≤1) практически пополам!

Интерпретация. Предельная кривая Пеано устанавливает непрерывное соответствие между прямой и плоскостью. Математическая неизбежность самокасаний — классический результат. Новым является тот факт, что самокасания играют важную роль в моделировании природных феноменов.

Дальний порядок. Не зная о нисходящих каскадах, ответственных за построение наших конечных кривых Пеано, можно только изумиться тому необычайному дальнему порядку, который позволяет этим кривым избегать не только самопересечений, но и самокасаний. Что касается последнего, то весь порядок вообще держится только на жесточайшей дисциплине: малейшее послабление — и все насмарку!

< А если совсем позабыть о дисциплине, то мы почти наверняка не получим ничего, кроме бесконечно повторяющихся самопересечений, поскольку полностью недисциплинированная кривая Пеано — это броуновское движение, о котором мы уже упоминали во второй главе и поговорим подробнее в главе 25.

Теорема Лиувилля и эргодичность. В механике принято представлять состояние сложной системы одной-единственной точкой в «фазовом пространстве». Известно, что в случаях применения к этому пространству уравнений движения каждая его область ведет себя следующим образом: ее протяженность (гиперобъем) остается инвариантной (теорема Лиувилля), однако ее форма меняется — область рассеивается и заполняет весь доступный объем с максимально возможной однородностью. Очевидно, что оба этих свойства находят отражение в том, как, с нашей легкой руки, ведет себя черный квадрат при построении кривой Пеано. Представляется интересным «копнуть» глубже и увидеть, что во многих упрощенных «динамических» системах, допускающих подробное изучение, каждая область рассеивается, трансформируясь во все удлиняющуюся и утончающуюся ленту. Интересно также было бы выяснить, не происходит ли дисперсия других систем по древовидным кривым Пеано вместо лент. ►

РИС. 98 И 99. КВАДРАТИЧНЫЕ ПОСТРОЕНИЯ КОХА С РАЗМЕРНОСТЬЮ D=2: ПРОХОЖДЕНИЯ ТРЕУГОЛЬНИКА ПО ЧЕЗАРО И ПО ПОЙА И ИХ ВАРИАНТЫ

Простейшим генератором, какой только можно в этом случае вообразить, является ломаная, состоящая из N=2 равных отрезков, угол θ между которыми удовлетворяет условию 90°≤θ≤180°. В предельном случае θ=180° генератор представляет собой отрезок прямой; случай θ=120° (проиллюстрированный в пояснении к рис. 71) порождает (помимо прочих) троичную кривую Коха. Генератор для предельного случая θ=90° показан ниже:

Используя этот генератор, можно построить невообразимое множество различных кривых Пеано (различия обусловлены формой инициатора и способом помещения генератора на предшествующий терагон). На рис. 98-102 дано несколько примечательных примеров.

< Кроме того, в главе 25 с помощью рандомизации всех кривых Пеано с данными Nr мы получим самое что ни на есть броуновское движение. ►

Прохождение треугольника по Пойа. Инициатор отрезок [0, 1], генератор — как на рисунке вверху. Генератор поочередно занимает правое и левое положение относительно терагона, причем его положение относительно начального отрезка (правое или левое) также поочередно меняется. Ниже показаны третий и четвертый этапы построения:

Терагоны напоминают квадратные куски диаграммной бумаги, запихнутые внутрь прямоугольного равнобедренного треугольника, один из катетов которого и есть исходный отрезок [0, 1]. Предельная кривая проходит по всей внутренней области треугольника.

Рис. 98. Прохождение Пойя по прямоугольному неравнобедренному треугольнику. Изменим генератор таким образом, чтобы он состоял из двух неравных отрезков, расположенных под прямым углом друг к другу. Читателю (в качестве упражнения) остается лишь придумать, как в этом случае построить кривую, избегающую самокасаний.

Прохождение треугольника по Чезаро. Инициатор — отрезок [0, 1], генератор — тот же, что и для прохождения по Пойа. Два следующих этапа построения приведены ниже (для большей ясности построения угол θ на рисунке равен 85 градусов вместо θ=90°).

То есть на всех этапах с нечетными номерами генератор располагается справа от кривой; получаемый в результате терагон представляет собой решетку из прямых, параллельных диагоналям инициатора. На всех же этапах с четными номерами генератор располагается слева от кривой; прямые, составляющие решетку получаемого при этом терагона, оказываются параллельными сторонам инициатора. Кривая асимптотически заполняет прямоугольный равнобедренный треугольник, причем исходный отрезок [0, 1] является гипотенузой этого треугольника.

Рис. 99. На рисунке изображено прохождение квадрата, полученное соединением двух прохождений Чезаро с инициаторами [0, 1] и [1,0]. (И здесь угол θ=90° заменен углом θ=85° для ясности построения.)


Самоперекрытие. Каждый отрезок в решетках, покрываемых терагонами Чезаро, покрывается дважды. Конструкция содержит не только самокасания, но и самоперекрытия.

«Эффективность» заполнения плоскости. Одно экстремальное свойство расстояния Пеано - Чезаро. Кривая Пеано с рис. 95 отображает отрезок [0, 1] на квадрат с диагональю [0, 1] иплощадью 1/2. Такая же фигура покрывается и кривой Пойа. Однако кривая Чезаро заполняет всего лишь прямоугольный равнобедренный треугольник с гипотенузой [0, 1] и площадью 1/4. Для того, чтобы покрыть весь квадрат, необходимо отобразить по Чезаро два отрезка, [1, 0] и [0, 1]. Таким образом, из двух рассматриваемых кривых кривая Чезаро оказывается менее «эффективной». Более того, кривая Чезаро вообще самая «неэффективная» кривая Пеано без самопересечений на квадратной решетке. Однако благодаря этому обстоятельству, она — видимо, в качестве компенсации — обладает одним замечательным свойством: левое или правое расстояния Пеано (см. с. 93) между точками P1 и P2 оказывается большим или равным квадрату евклидова расстояния между этими точками:

|L{P1,P2}|≥|P1P2|2; |R{P1,P2}|≥|P1P2|2.

Для других кривых Пеано разница между расстоянием Пеано и евклидовым расстоянием может быть как положительной, так и отрицательной.

Задача Какутани - Гомори. Какутани (источник — частная беседа) предлагает выбрать M точек Pm внутри единичного квадрата [0,1]2 и рассмотреть выражение inf∑|PmPm+1|2, в котором инфимум вычисляется по всем линиям, соединяющим точки Pm последовательно. Он доказывает, inf≤8, но полагает, что этот предел не является наилучшим. В самом деле, Р. Э. Гомори сообщает (источник — частная беседа), что он получил уточненный предел inf≤4. При доказательстве Гомори использует кривую Пеано-Чезаро следующим образом: (А) добавим к множеству точек Pm угловые точки квадрата, если они этому множеству еще не принадлежат; (В) расположим M точек Pm в порядке их первых посещений последовательностью из четырех кривых Пеано- Чезаро, построенных внутри квадрата вдоль его сторон; (С) убедимся, что удлинение цепочки на этапе (А) не повлекло за собой уменьшения ∑|PmPm+1|2; D) убедимся, что каждое слагаемое |PmPm+1|2 не уменьшается при замене его на |L(Zm,Zm+1)|; (Е) ∑|L(Zm,Zm+1)|=4. При использовании других кривых Пеано этапы (В) и (D) следует исключить.

РИС. 101 И 102. ПРОХОЖДЕНИЯ КВАДРАТА И ДРАКОНА

Генератор здесь тот же, что и для предыдущих кривых, однако незначительные, на первый взгляд, изменения в других правилах оказывают значительное влияние на результат.

Прохождение квадрата по Пеано, более поздний вариант.

Инициатор отрезок [0, 1], а второй, четвертый и шестой этапы построения выглядят следующим образом:

Эффективность. Экстремальное свойство. Эта кривая заполняет область, площадь которой равна 1, тогда как кривые на рис. 98 и 99, а также кривая дракона, которую мы рассмотрим ниже, покрывают лишь 1/2 или 1/4. Если терагоны лежат на прямоугольной решетке, покрываемая ими область не может превышать 1. Этого максимума она достигает лишь в случае терагонов без самопересечений. Иными словами, отсутствие самокасаний важно не только с эстетической точки зрения, а самокасающаяся кривая со срезанными точками самокасаний (как на рис. 95) не становится от этого эквивалентной кривой Коха без самопересечений.

Взяв только нечетные этапы построения данного прохождения квадрата и соединив средние точки последовательных отрезков терагонов (чтобы избежать самокасаний), мы возвратимся к кривой Пеано, вариант Гильберта.

Рис. 102. Кривая, заполняющая прямоугольную трапецию. Изменим генератор таким образом, чтобы он представлял собой ломаную, составленную из двух неравных отрезков под прямым углом друг к другу. Избегающее самопересечений построение аналогично построению кривой на предыдущем рисунке.

Дракон Хартера-Хейтуэя. (См. [162] и [95].) Инициатор — отрезок [0, 1], генератор — как в начале пояснения к рис. 98. Генератор поочередно занимает правое и левое положение относительно терагона. Единственное отличие от построения прохождения треугольника по Пойа заключается в том, что на всех этапах построения генератор помещается справа от начального отрезка кривой. Ниже показаны третий и четвертый этапы построения:

Последствия этого незначительного изменения выглядят весьма впечатляюще:

На этой иллюстрации нельзя различить саму кривую, мы видим лишь ее границу, которая называется кривой дракона. Таким образом, эта кривая Пеано имеет полное право называться прохождением дракона. Как и любая другая кривая Коха, инициатором которой служит отрезок [0, 1], дракон самоподобен. Кроме того, отчетливо видно, что дракон разделен на части, соединяющиеся между собой тонкими переходами. Эти части подобны друг другу, но не целому дракону.

Двойной дракон. Во «Фракталах» 1977 года отмечалось, что при таких «драконовских» правилах построения данной кривой более естественным инициатором представляется последовательность отрезков [0, 1] и [1,0]. Фигуру, которую в итоге заполняет кривая, я назвал двойным драконом. Эта фигура получила числовое представление в [272]. Выглядит она вот так (один дракон — черный, другой — серый):

Река двойного дракона. Стерев (ради удобства рассмотрения) мелкие притоки, получим древовидную реку двойного дракона:

Двойного дракона можно разбить на его уменьшенные подобия

Шкура двойного дракона. Шкура представляет собой кривую Коха со следующим генератором:

Размеры длинного и короткого отрезков составляют соответственно r1=1/√2 и r2=(1/2)/√2=r13. Следовательно, генерирующая размерность функция имеет вид (1/√2)D+(1/2√2)D=1, а величина x=2D/2 удовлетворяет x3−x2−1=0.

Другие драконы. (См. [95].) Возьмем некоторую бесконечную последовательность x1,x2,..., где каждый xk может быть либо 0, либо 1, и воспользуемся значением xk для определения положения генератора при начальном отрезке на k-м этапе построения: если xk=1, то первый генератор расположен справа, если же xk=0, то первый генератор расположен слева. Каждая такая последовательность породит нового дракона.

Рис. 104 и 105. ПРОХОЖДЕНИЯ СНЕЖИНОК: НОВЫЕ КРИВЫЕ И ДЕРЕВЬЯ ПЕАНО (РАЗМЕРНОСТЬ ВОДОРАЗДЕЛОВ И РЕК D~1,2618)


На этих иллюстрациях представлено семейство кривых Пеано моего собственноручного изготовления. Они заполняют оригинальную снежинку Коха (см. рис. 74); тем самым оказываются сведены нос к носу два главных чудовища начала века.

Более важное их достоинство заключается в том, что одного взгляда на них достаточно для подтверждения справедливости одного из основных положений настоящего эссе: кривые Пеано ни в коем случае не являются математическими чудовищами, не допускающими никакой конкретной интерпретации. При отсутствии самокасаний кривые Пеано дают ясно видимую и легко интерпретируемую картину скопления сопряженных деревьев. Эти деревья представляют собой хорошие модели первого порядка для рек, водоразделов, настоящих деревьев и кровеносной системы человека.

Ко всему прочему, мы получаем здесь и замечательный побочный продукт: способ разбиения снежинки на меньшие неравные снежинки.

Семизвенный генератор. Инициатор остается неизменным [0,1], а генератор и второй этап построения выглядят следующим образом:

Чтобы быть более точными, обозначим изображенный выше генератор буквой S и назовем его прямым. Определим зеркальное отражение генератора S относительно прямой x=1/2 как обратный генератор F. На любом этапе построения прохождения снежинки можно использовать как S-, так и F-генераторы, на выбор. То есть каждая бесконечная последовательность символов S и F даст в результате новую кривую, заполняющую снежинку.

Сглаженные терагоны. Ломаные линии выглядят несколько грубовато, но вот если представить каждый отрезок в виде дуги в одну шестую окружности, то заполняющие снежинку терагоны будут выглядеть изотропными и вообще гораздо более «естественными».

Рис. 74. Давным-давно, еще на рис. 74, мы использовали продвинутый терагон семизвенного прохождения снежинки, сглаженного и закрашенного, для заполнения озера волнующейся водой. Теперь, когда мы снова рассматриваем эту картину, она ассоциируется у нас с жидкостью, текущей вдоль фрактальной границы, причем хорошо различимы два приблизительно параллельных потока, движущиеся с различными скоростями.

Тринадцатизвенный генератор. Изменим предыдущий генератор, состоящий из семи отрезков, заменив его пятое звено на уменьшенную копию всего генератора. Эта копия также может иметь S- и F- варианты. В последнем случае получим следующие генератор и второй этап построения:

Рис. 104. Этот продвинутый терагон, изображенный в виде границы между двумя причудливо переплетенным областями, лучше всяких слов объясняет значение термина «заполнение плоскости».

Рис. 105. Сгладим построенный выше 13-звенный генератор. Сгладим также и снежинку Коха. Первые этапы получаемого в результате построения приведены на рис. 105.

Размерности рек. Каждая отдельная река в оригинальной кривой Пеано имеет конечную длину и, как следствие, размерность 1. В данном случае размерность отдельных рек равна ln4/ln3. Для достижения размерности 2, все реки нужно рассматривать в совокупности.

Рис. 106 и 107. КРИВАЯ ПЕАНО-ГОСПЕРА. ЕЕ ДЕРЕВЬЯ И АНАЛОГИЧНЫЕ ДЕРЕВЬЯ КОХА (РАЗМЕРНОСТЬ ВОДОРАЗДЕЛОВ И РЕК D~1,1291)


К рис. 75. На этом рисунке не получившие в свое время объяснения тонкие ломаные линии представляют собой начальные этапы построения (с 1-го по 4-й) кривой Пеано в интерпретации Госпера (см. [163]). Это — первая кривая Пеано без самопересечений, полученная только методом Коха, без дальнейшей доработки.

Инициатор — отрезок [0, 1]. Генератор —

Если развернуть генератор против часовой стрелки так, чтобы его первое звено заняло горизонтальное положение, то становится видно, что он является частью треугольной решетки, занимая на ней 7 из 3х7 звеньев. Благодаря этой особенности треугольные решетки приобретают свойство, аналогичное описанному на с. 101 свойству квадратных решеток.

Теперь мы можем убедиться в том, что данная кривая Пеано действительно заполняет фигуру, ограниченную кривой Коха на рис. 75. Линия переменной толщины внутри кривой Коха на рис. 75 представляет собой результат пятого этапа настоящего построения.

Рис. 106, слева. Четвертый терагон кривой Госпера, перерисованный в виде границы между черной и белой областями.

Рис. 106, справа. Деревья рек и водоразделов. Изображены реки и водоразделы, проходящие по средним линиям черных и белых «пальцев» кривой, показанной на этом же рисунке слева.

Рис. 107, вверху. Мы взяли древовидную структуру рек и водоразделов, показанную на рис. 106 справа, и привели толщину линий в соответствие с их относительной значимостью в схеме Хортона-Штралера (см. [297]). В настоящем примере каждой кривой (и рекам, и водоразделам) назначается ширина, пропорциональная ее длине по прямой. Реки даны черным, водоразделы — серым.

Размерности. Каждая кривая Пеано определяет размерность D собственной границы. На рис. 95 и 98 указанная граница представляет собой просто квадрат. На последующих рисунках появляются драконова шкура и кривая-снежинка. Здесь же мы имеем дело с фрактальной кривой, размерность которой D~1,1291 и которая состоит отчасти из рек, отчасти из водоразделов. Все другие реки и водоразделы сходятся к кривой с фрактальной размерностью D=1,1291.

Франция. Тому, кто, будучи школьником, часто разглядывал карту бассейнов Луары и Гаронны, наши иллюстрации наверняка о многом напомнят.

Рис. 107, внизу. Дерево рек, построенное непосредственно с помощью каскада Коха. Когда сам генератор имеет древовидную структуру, он порождает при построении дерево. Пусть, например, генератор выглядит вот так:

Получаем еще один способ осушения внутренней области кривой Коха с рис. 75. (Ветви, расположенные у самых «истоков», были обрезаны.)

РИС. 109 И 110. ЗАПОЛНЯЮЩИЕ ПЛОСКОСТЬ ФРАКТАЛЬНЫЕ ДЕРЕВЬЯ, ПЕРЕКОШЕННАЯ СНЕЖИНКА И КВАРТЕТ

Заполняющие плоскость «речные» деревья, получаемые из некоторых кривых Пеано, могут быть получены и с помощью прямого рекурсивного построения. Ключом здесь служит генератор, который сам имеет древовидную форму. Простейший и скучнейший пример: генератор составлен из четырех отрезков, образующих фигуру, похожую на знак «+». В результате построения получим речное дерево кривой Пеано- Чезаро (см. рис. 99).

Перекошенная снежинка. Более интересного результата можно достичь, взяв в качестве инициатора отрезок [0, 1], а в качестве генератора — следующую фигуру:

Для начала обратим внимание на то, что отдельные реки порождаются генератором, который смещает среднюю точку отрезка (таким, например, как на рис. 71). Следовательно, всякая асимптотическая река имеет размерность D=ln2/ln√3=ln4/ln3. Это значение хорошо знакомо нам еще по снежинке Коха, однако кривая, которой мы намерены заняться теперь, — не снежинка, поскольку размещение генератора на прямолинейных отрезках следует иному правилу.

Если мы хотим, чтобы осталось место для рек, необходимо, чтобы положение генератора с каждым отрезком менялось с правого на левое и наоборот. Таким образом симметрия снежинки искажается, а новая область для заполнения реками заслуживает себе имя — перекошенная снежинка.

Вернемся к дереву рек. Его терагоны не перекрывают сами себя, но самокасаний здесь очень много. Неизбежен — и даже напрашивается — асимптотический вариант этой особенности, поскольку он вполне верно отражает тот факт, что иногда несколько рек начинаются в одной точке. Как мы увидим чуть позже, речные терагоны могут и вовсе обходиться без самокасаний. Рассматриваемый же речной терагон — как раз благодаря самокасаниям — представляет собой ({- неразборчиво заштрихованный обрывок гексагональной диаграммной бумаги в форме близкой фрактальной кривой.

Рис. 110, вверху. Речное дерево станет более явным, если стереть все участки реки, соприкасающиеся с истоком, и изобразить главную реку более жирной линией. Площадь бассейна такой реки составляет √3/2~0,8660.

Прохождение перекошенной снежинки. Построим кривую Пеано, инициатор которой имеет форму равностороннего треугольника, а генератор представляет собой ломаную линию, звенья которой равны и расположены под углом в 60° друг к другу. Это — крайний случай при M=3 из семейства генераторов, использованных при построении кривых на рис. 75 и 76, причем он значительно отличается от остальных случаев этого семейства. Подробнее см. в [95].

Можно легко убедиться, что дерево рек этой кривой Пеано совпадает с деревом, которое мы только что получили с помощью прямого построения. Длина стороны инициатора равна 1, а площадь, заполняемая соответствующей кривой Пеано, составляет √3/6~0,2886 (очень неэффективно!).

Квартет. Теперь рассмотрим другую кривую Коха вместе с тремя кривыми, заполняющими ее: одной кривой Пеано и двумя деревьями. Эти придуманные мною фигуры иллюстрируют еще одну весьма интересную тему.

Инициатором снова будет отрезок [0, 1], а генератор выглядит следующим образом:

Граница заполняемой области стремится в пределе к кривой Коха с размерностью D=ln3/ln√5=1,3652. Продвинутые терагоны границы и кривой Пеано составляют центр рис. 79; я назвал эту фигуру квартетом. Каждый «игрок», равно как и стол между ними, способен к самоподобному разбиению плоскости.

Внутренняя область квартета заполняется, конечно же, и его собственным деревом рек. Однако если воспользоваться каким-либо из следующих генераторов, можно получить совершенно другие варианты заполнения:

Терагоны, построенные с использованием левого генератора, демонстрируют самокасания (как и кривые в первом примере данного пояснения). Заполняемая площадь составляет 1/2. Правый генератор позволяет терагонам избежать самокасаний, и заполняемая площадь увеличивается до 1. На рис. 110 (внизу) показан один из продвинутых терагонов такой кривой.

8 ФРАКТАЛЬНЫЕ СОБЫТИЯ И КАНТОРОВА ПЫЛЬ

Основная цель этой главы — по возможности безболезненное — но достаточно подробное — ознакомление читателя с еще одним математическим объектом из тех, что обычно рассматриваются как патологические, — с канторовой пылью, С. Фрактальная размерность канторовой пыли и других родственных ей пыльных структур, которые мы здесь рассмотрим, находится в интервале от 0 до 1.


Так как эти структуры образованы точками на прямой, их сравнительно легко изучать. Кроме того, с их помощью можно в наипростейшей форме представить некоторые понятия, занимающие центральное место в теории фракталов, но настолько редко применявшиеся в прошлом, что для их обозначения даже не было придумано терминов. Начнем с термина «пыль», который теперь приобретает специальный смысл как неформальный эквивалент термина «множество, топологическая размерностьDT которого равна 0» (так же, как «кривая» и «плоскость» означают множества, топологическая размерность которых равна, соответственно, 1 и 2). Другие новые термины — такие, например, как творог, пауза и трема — будут объяснены ниже.

ШУМ

Обычный человек называет шумом звук, который либо слишком силен, либо не имеет подходящего ритма или ясной цели, либо просто мешает слушать более приятные звуки. Партридж [463] заявляет, что слово «шум» «происходит от латинского nausea «тошнота» (родственного латинскому же nautes «моряк»); можно легко проследить семантическую связь, представив себе звуки, издаваемые толпой пассажиров древнего корабля, попавшего в бурю». («Оксфордский словарь английского языка», похоже, имеет на этот счет другое мнение.) Что до современной физики, то она определяет термин «шум» (менее живописно и далеко не так точно) как синоним случайных флуктуаций или ошибок независимо от их происхождения или проявлений. Канторова пыль С в этой главе вводится через изучение прецедента, а в роли прецедента выступает несколько эзотерический, но довольно простой шум.

ОШИБКИ В ЛИНИЯХ ПЕРЕДАЧИ ДАННЫХ

Канал передачи — это некая физическая система, способная передавать электрический сигнал. Однако электрический ток, к сожалению, не свободен от спонтанных шумов. Качество передачи зависит от вероятности возникновения ошибок, обусловленных шумовыми искажениями, которые, в свою очередь, зависят от отношения интенсивности сигнала и шума.

В этой главе мы будем говорить о каналах, по которым данные передаются между компьютерами и используются чрезвычайно сильные сигналы. Интересная особенность заключается в том, что сигнал дискретен; следовательно, распределение шумов донельзя упрощается распределением ошибок. Шум представляет собой некую функцию, которая может иметь множество значений, в то время как функция ошибок может иметь только два возможных значения. В ее роли может выступать, скажем, характеристическая функция, которая при отсутствии ошибок в некий момент времени t равна 0, а при наличии ошибки принимает значение 1.

Физики уже разобрались в структуре шумов, которые преобладают в случае слабых сигналов (тепловой шум, например). Однако в вышеописанной задаче сигнал настолько силен, что классическими шумами можно пренебречь.

Что касается тех шумов, которыми пренебречь нельзя, — избыточных шумов — они сложны и захватывающи, потому что о них почти ничего не известно. Мы рассмотрим один такой избыточный шум, который приблизительно в 1962 году настолько заинтересовал инженеров- электриков, что для его изучения потребовалась помощь различных специалистов в других областях. Я также внес свой скромный вклад в общее дело — занимаясь именно этой конкретной практической задачей, я впервые ощутил нужду во фракталах. Никто в то время даже отдаленно не представлял себе, насколько далеко заведет нас тщательное изучение этой, казалось бы незначительной, инженерной проблемы.

ПАКЕТЫ И ПАУЗЫ

Подвергнем ошибки анализу с постепенно возрастающей точностью. Грубый анализ показывает наличие периодов, во время которых не зарегистрировано ни одной ошибки. Условимся называть эти периоды затишья «паузами нулевого ранга», если их длительность превышает один час. Любой временной промежуток, ограниченный с обеих сторон паузами нулевого ранга, назовем «пакетом ошибок нулевого ранга». Увеличив точность анализа в три раза, мы увидим, что исходный пакет также «прерывист». То есть более короткие паузы «первого ранга» длительностью 20 мин или больше перемежаются более короткими пакетами «первого ранга». Аналогично, каждый из последних содержит несколько пауз «второго ранга» длительностью 400 с, разделяющих пакеты «второго ранга» и т.д.; каждый этап основывается на паузах и пакетах, в три раза более коротких, чем предыдущие. Грубую иллюстрацию этого процесса можно видеть на рис. 120. (На пояснение пока внимания не обращайте.)

Предыдущее описание предполагает существование такого понятия, как относительное расположение пакетов k-го ранга внутри пакета k−1-го ранга. Распределение вероятностей этих относительных расположений, по всей видимости, не зависит от k. Очевидно, такая инвариантность говорит о самоподобии, а там и до фрактальной размерности недалеко, однако не будем спешить. Рассмотрения различных прецедентов, содержащиеся в настоящем эссе, нацелены, помимо прочего, как на обнаружение нового, так и на уточнение старого. Исходя из этих соображений, представляется оправданным несколько изменить исторический порядок и представить новое с помощью грубого неслучайного варианта стохастической модели ошибок Бергера - Мандельброта (см. главу 31).

ПРИБЛИЖЕННАЯ МОДЕЛЬ ПАКЕТОВ ОШИБОК: ФРАКТАЛЬНАЯ КАНТОРОВА ПЫЛЬ C

В предыдущем разделе мы предприняли попытку построить множество ошибок, начав с прямой линии, представляющей временную ось, и вырезая все уменьшающиеся свободные от ошибок паузы. Возможно, для естественных наук такая процедура и внове, однако в чистой математике она используется довольно давно — по меньшей мере, со времен Георга Кантора (см. [207], особенно с. 58).

У Кантора (см. [62]) инициатором служит замкнутый интервал [0,1]. Термин «замкнутый» и квадратные скобки означают, что крайние точки принадлежат интервалу: такая запись уже использовалась в главе 6, однако до сих пор у нас не было необходимости указывать на это явным образом. Первый этап построения состоит в разделении интервала [0,1] на три участка и удалении открытой средней трети, которая обозначается ]1/3, 2/3[. Термин «открытый» и развернутые квадратные скобки означают, что крайние точки интервала в этот интервал не входят. Затем удаляются средние трети каждого из N=2 оставшихся отрезков. И так далее до бесконечности.

Получаемое в результате множество остатков C называется либо двоичным, поскольку N=2, либо троичным, поскольку исходный интервал делится на три части.

В общем случае количество частей, называемое основанием, обозначается буквой b, причем отношение между N-й частью множества и всем множеством определяется коэффициентом подобия r=1/b. Множество C называется также канторовым дисконтинуумом; чуть позже я предложу свой термин «канторова фрактальная пыль». И еще: так как точка на временной оси отмечает некое «событие», множество C представляет собой фрактальную последовательность событий.

СТВОРАЖИВАНИЕ, ТРЕМЫ И СЫВОРОТКА

В рамках термина, который Льюис Ричардсон применил к турбулентности, а мы позаимствовали для описания береговых линий и кривых Коха в главе 6, канторова процедура является каскадом. «Вещество», однородно распределенное вдоль инициатора [0, 1], подвергается воздействию центробежного вихря, который «сметает» его к крайним третям интервала.

Среднюю треть, вырезанную из интервала [0, 1], мы будем называть трёма-генератором. Этот неологизм образован от греческого слова, означающего «дыра, отверстие» (дальним родственником этого слова является латинское termes «термит»). Это, пожалуй, самое короткое греческое слово из тех, что на сегодняшний день еще не обзавелись значительной терминологической нагрузкой.

В данном контексте тремы совпадают с паузами, однако в других примерах, с которыми мы встретимся позже, совпадения не происходит, поэтому и возникла необходимость в двух разных терминах.

По мере того, как опустошается «трема первого порядка», вещество сохраняется и перераспределяется с однородной плотностью по внешним третям, которые мы будем называть предтворогом. Здесь в действие вступают еще два вихря, и та же процедура повторяется на интервалах [0, 1/3] и [2/3, 1]. Процесс продолжается как ричардсонов каскад, стремясь в пределе к множеству, которое мы назовем творогом. Если длительность этапа пропорциональна размеру вихря, то общая длительность процесса конечна.

Для пространства, не занятого творогом, я предлагаю термин сыворотка (в совокупности получаем вполне полноценную простоквашу).

Предполагается, что эти термины будут использоваться не только в их математическом значении, но для выражения их физического смысла. Створаживанием можно называть любой каскад неустойчивых состояний, приводящий в итоге к сгущению вещества, а термин творог может определять объем, внутри которого некая физическая характеристика становится — в результате створаживания — чрезвычайно концентрированной.

Этимология. Слово «творог» происходит от древнеанглийского crudan «давить, жать, сильно толкать». Не следует думать, будто эта маленькая демонстрация эрудиции, позаимствованной у Партриджа [463], является абсолютно бесполезной — этимологические родственники творога несомненно интересуют нас с фрактальной точки зрения (см. гла- ву 23).

Обратите внимание на цепочку свободных ассоциаций: творог > сыр > молоко > Млечный Путь > Галактика (греч. “гала” переводится как «молоко») > галактики. Термин створаживание пришел мне в голову, когда я занимался как раз галактиками, и этимологическая подоплека «галактического створаживания» весьма меня заворожила.

ВНЕШНИЙ ПОРОГ И ЭКСТРАПОЛИРОВАННАЯ КАНТОРОВА ПЫЛЬ

В качестве прелюдии к экстраполяции множества C давайте припомним кое-что из истории. Кантор представил миру множество C, едва покинув поле своей прежней деятельности — изучение тригонометрических рядов. Поскольку такие ряды тесно связаны с периодическими функциями, единственная доступная им экстраполяция заключается в бесконечном повторении. Вспомним теперь такие говорящие термины, как внешний и внутренний предел, которые мы в главе 6 позаимствовали из теории турбулентности. Под этими терминами понимают размеры ε и Ω, соответственно наименьшего и наибольшего элемента множества, — можно сказать, что Кантор решил ограничиться порогом Ω=1. На k-м этапе построения ε=3−k, однако для самого C порог ε=0. Для получения любого другого Ω<∞ — например, приличествующего ряду Фурье значения , — необходимо увеличить периодическую канторову пыль в Ω раз.

Однако при таком повторении разрушается самоподобие, которым мы в настоящем эссе весьма дорожим. Чтобы этого избежать, следует соблюсти два простых правила: инициатор используется только для экстраполяции, а сама экстраполяция происходит в виде обратного или восходящего каскада. На первом этапе множество C увеличивается в 1/r=3 раза и размещается на интервале [0, 3]. В результате получаем множество, включающее в себя множество C и его копию, смещенную вправо и отделенную от C новой тремой, длина которой равна 1. На втором этапе увеличиваем получившееся множество снова в 3 раза и размещаем результат на интервале [0, 9]. Получаем множество C плюс три его копии, смещенные вправо и разделенные двумя новыми тремами длины 1 и одной новой тремой длины 3. Дальнейшие этапы восходящего каскада увеличивают множество C с возрастающим коэффициентом подобия вида 3k.

При желании можно чередовать, скажем, два этапа интерполяции и один этап экстраполяции и т. д. При таком построении каждая серия из трех этапов увеличивает внешний порог Ω в 3 раза и уменьшает внутренний порог ε в те же 3 раза.

< Отрицательная ось в такой экстраполированной пыли остается пустой — бесконечная трема. Соответствующее понятие мы обсудим позже, в главе 13, где мы рассмотрим (бесконечные) континенты и бесконечные же кластеры. ►

РАЗМЕРНОСТИ D В ИНТЕРВАЛЕ ОТ 0 ДО 1

Множество, полученное в результате бесконечных интерполяции и экстраполяции, самоподобно, а его размерность

D=lnN/ln(1/r)=ln2/ln3~0,6309

представляет собой дробь в интервале от 0 до 1.

Изменяя правила створаживания, мы можем получить другие значения D — собственно, любое значение между 0 и 1. При длине тремы первого этапа 1−2r, где 0<r<1/2, имеем размерность ln2/ln(1/r).

При N≠2 становится доступным еще большее разнообразие. Для множеств c N=3 и r=1/5 находим

D=ln3/ln5~0,6826.

Для множеств c N=2 и r=1/4

D=ln2/ln4=1/2.

Для множеств c N=3 и r=1/9 получаем тот же результат:

D=ln3/ln9=1/2.

Хотя размерности двух последних множеств равны, «выглядят» они очень по-разному. Об этом наблюдении мы будем подробнее говорить в главе 34, где оно приведет нас к концепции лакунарности.

Обратите внимание также на то, что для любого D<1 есть по крайней мере одно канторово множество, однако поскольку Nr≤1 и, как следствие, N≤1/r, нет ни одного множества, размерность D которого превышала бы 1.

МНОЖЕСТВО С НАЗЫВАЕТСЯ «ПЫЛЬЮ», ПОТОМУ ЧТО ЕГО ТОПОЛОГИЧЕСКАЯ РАЗМЕРНОСТЬ DT РАВНА НУЛЮ

Фрактальная размерность D канторова множества может изменяться в пределах от 0 до 1; с топологической же точки зрения все канторовы множества имеют размерность 0, так как, по определению, любая точка канторова множества отделена от любой другой, причем для ее отделения не требуется ничего удалять. С этой стороны нет никакой разницы между C и конечным множеством точек! Тот факт, что топологическая размерность DT в последнем случае равна 0, известен нам из стандартной геометрии; мы даже используем это обстоятельство в главе 6 для доказательства того, что топологическая размерность кривой Коха K равна 1. Вообще, DT=0 для любого вполне несвязного множества.

При отсутствии общепринятого обыденного термина, вроде «кривой» и «плоскости» (которые представляют собой связные множества с размерностями DT=1 и DT=2, соответственно), я предлагаю называть множества с DT=0 пылью.

РАСПРЕДЕЛЕНИЕ ДЛИН ПАУЗ

Возьмем канторову пыль и обозначим через и возможное значение для длины паузы, через U — неизвестную длину паузы, а через Nr(U>u) — количество пауз или трем длины U, большей, чем u. < Это обозначение построено по аналогии с обозначением Pr(U>u) из теории вероятности. ► Оказывается, существует постоянный префактор F — такой, что график функции Nr(U>u) постоянно пересекает график Fu−D. И вновь в дело вступает размерность. Приняв за координаты lnu и lnNr, получим однородные ступени.

СРЕДНЕЕ КОЛИЧЕСТВО ОШИБОК

Как и в случае береговых линий, можно получить приблизительное представление о последовательности ошибок, если остановить канторо- во створаживание при длине интервалов ε=3−k. Эта величина может быть равна времени, необходимому для передачи единичного символа. Кроме того, следует использовать канторову периодическую экстраполяцию с большим, но конечным значением Ω.

Количество ошибок между моментами времени 0 и R (которое мы обозначим через M(R)) выдерживает ритм, так как учитываются только те моменты, в которые происходит что-то важное. Хороший пример фрактального времени.

Если сигнал начинается в момент времени t=0 (а мы рассматриваем только этот случай), величина M(R) ведет себя так же, как в случае кривой Коха. Пока R остается меньше 0, количество ошибок удваивается всякий раз, когда R увеличивается в 3 раза. В результате имеем M(R)∝RD.

Это выражение похоже на стандартное выражение для массы диска или шара радиуса R в D-мерном евклидовом пространстве. Оно также идентично выражению, полученному в главе 6 для кривой Коха.

В качестве вывода можно заметить, что среднее количество ошибок на единицу длины приблизительно пропорционально RD−1 при условии, что R находится в интервале между внутренним и внешним порогами. При конечном Ω уменьшение среднего количества ошибок продолжается до окончательной величины ΩD−1 которая достигается при R=Ω. После этого их плотность остается более или менее постоянной. При бесконечном Ω среднее количество ошибок уменьшается в конечном счете до нуля. Наконец, эмпирические данные часто предполагают, что величина Ω конечна и очень велика, однако не позволяют определить ее со сколько-нибудь приемлемой точностью. В этом случае среднее количество имеет некоторый нижний предел, который не обращается в нуль, но его неопределенность лишает его какого бы то ни было практического смысла.

КОНЦЕВЫЕ ТОЧКИ ТРЕМ И ИХ ПРЕДЕЛЫ

< Наиболее заметные члены множества C, концевые точки трем, вовсе не исчерпывают всего множества; скажем больше, они составляют лишь малую его часть. Физическую значимость других точек мы обсудим в главе 19. ►

ИСТИННАЯ ПРИРОДА КАНТОРОВОЙ ПЫЛИ

Читателю, который продержался до этого места и/или/ наслышан об активно сейчас обсуждаемых в научной литературе чертовых лестницах (см. пояснение к рис. 125), возможно, будет сложно поверить в то, что, когда я начал работу над этой темой в 1962 г., все вокруг были единодушны в том, что канторова пыль по меньшей мере столь же чудовищна, как кривые Коха и Пеано.

Каждый уважающий себя физик автоматически «выключался» при одном только упоминании имени Кантора, порывался убежать за тридевять земель от всякого, заявляющего о научной ценности множества C, и всех желающих слушать с готовностью уверял в том, что все подобные заявления были приняты, рассмотрены и найдены беспочвенными. Поддержали меня в то время только предположения С. Улама (совершенно завораживающие, несмотря на отсутствие должной проработки и неприятие научной общественностью) относительно возможной роли канторовых множеств при изучении гравитационного равновесия в звездных скоплениях (см. [570]).

Чтобы опубликовать работу о канторовой пыли, мне пришлось убрать из нее всякое упоминание имени Кантора!

Однако случилось так, что Природа сама привела нас к множеству C. В главе 19 мы поговорим еще об одной, совершенно иной, физической роли для C. Все это призвано подчеркнуть, что истинная природа канторовой пыли весьма разнообразна.

Несомненно, в большинстве случаев само множество C представляет собой весьма грубую модель, нуждающуюся в многочисленных уточнениях. И все же я настаиваю, что те самые свойства, благодаря которым многие считают канторовы дисконтинуумы патологией, незаменимы при моделировании перемежаемости и должны быть сохранены в последующих, более реалистичных, заменителях этих множеств.

Рис. 120 и 121. КАНТОРОВЫ ТРОИЧНЫЕ ГРЕБЕНЬ И БРИКЕТ (РАЗМЕРНОСТЬ ГОРИЗОНТАЛЬНОГО СЕЧЕНИЯ D=ln2/ln3=0,6309). КОЛЬЦА САТУРНА. КАНТОРОВЫ ЗАНАВЕСЫ


Инициатором для канторовой пыли служит интервал [0, 1], а генератор имеет следующий вид:


Рис. 120. Канторову пыль необычайно трудно изобразить на рисунке, так как она настолько тонка и разрежена, что практически невидима. Для получения хоть какого-нибудь представления о ее форме, утолщим исходный интервал и назовем результат канторовым гребнем. < Строго говоря, у нас получится декартово произведение канторовой пыли длины 1 на отрезок длины 0,03. ►

Створаживание. Построение канторова гребня описывается процессом, который я назвал створаживанием. Сначала изобразим стержень круглого сечения (в проекции получится прямоугольник с соотношением «высота/длина», равным 0,03). Удобнее всего представить, что материал, из которого изготовлен стержень, имеет очень малую плотность. Затем материал стержня начинает «створаживаться», смещаясь из средней трети стержня к его крайним третям, причем положение последних остается при этом неизменным. При дальнейшем створаживании вещество уходит из средних третей каждой из крайних третей уже в их собственные крайние трети и так далее до бесконечности. В пределе мы получим бесконечно большое количество бесконечно тонких пластин бесконечно большой плотности. Эти пластины распределены вдоль прямой весьма особенным образом, обусловленным производящим процессом. На рисунке створаживание остановлено на этапе, соответствующем предельному разрешению как типографского пресса, так и человеческого глаза, — последняя строка неотличима от предпоследней; каждый из элементов последней строки выглядит просто как темная линия, тогда как на самом деле представляет собой две тонкие пластины, разделенные пустым промежутком.

Канторов брикет. Выберем в качестве исходного объекта для створаживания круглый корж, толщина которого значительно меньше его диаметра, и пусть тесто при створаживании разделяется на более тонкие коржи (освобождая место для соответствующей начинки). В результате получим этакий бесконечно экстраполированный «наполеон», который можно назвать канторовым брикетом.

Кольца Сатурна. Раньше считалось, что Сатурн окружен одним сплошным кольцом. Затем была открыта щель, разделяющая кольцо, потом еще одна, и наконец «Вояджер-I» обнаружил огромное количество таких щелей, в большинстве своем очень узких. «Вояджер» также установил, что кольца прозрачны: они пропускают солнечный свет... как и подобает множеству, названному нами «тонким и разреженным».

Таким образом, структура колец (см. [542], особенно иллюстрацию на обложке) являет собой, по всей видимости, совокупность близко расположенных окружностей, причем радиус каждой из этих окружностей соответствует расстоянию от некоторой точки отсчета до некоторой точки канторовой пыли. < Специальное название для такого множества — декартово произведение канторовой пыли на окружность. Вообще говоря, мы, наверное, получим более близкую к оригиналу картинку, если умножим окружность на пыль положительной меры, подобную тем, что рассматриваются в главе 15. ► Добавление в последнюю минуту: та же идея независимо от меня озарила и авторов [10], только они соотнесли ее с уравнением Хилла; в Примечании 6 к упомянутой работе содержится немало других соображений по существу вопроса.

Спектры. Хартер описывает в [199] спектры некоторых органических молекул; сходство этих спектров с канторовой пылью потрясает.

Рис. 121. Этот рисунок помогает яснее представить форму канторовой пыли посредством помещения ее среди остальных пылевидных множеств с N=2 и переменным значением r. На вертикальной оси откладывается либо само значение r, изменяющееся в интервале от 0 до 1/2 (внизу), либо размерность D в интервале от 0 до 1 (вверху). Верхняя граница обоих занавесов — это полный интервал [0, 1]. Любой горизонтальный срез на каждом из рисунков представляет собой какую-либо канторову пыль (стрелками показаны значения r=1/3 и D=0,6309).

Знаменитый греческий парадокс. Греческие философы полагали, что условием неограниченной делимости тела является его непрерывность. Очевидно, они ничего не знали о канторовой пыли.

Рис. 125. ФУНКЦИЯ КАНТОРА, ИЛИ ЧЕРТОВА ЛЕСТНИЦА (РАЗМЕРНОСТЬ D=1, РАЗМЕРНОСТЬ МНОЖЕСТВА АБСЦИСС ПОДСТУПЕНЕЙ D ~ 0,6309). КАНТОРОВО ДВИЖЕНИЕ


Функция Кантора описывает распределение массы вдоль канторова гребня, показанной на рис. 120. Многие называют график этой функции чертовой лестницей — она и впрямь ведет себя весьма странно, чтобы не сказать больше. Условимся, что и длина, и масса гребня равны 1; кроме того, каждой точке абсциссы R поставим в соответствие массу M(R), содержащуюся между 0 и R. Поскольку в паузах никакой массы нет, функция M(R) на этих интервалах остается постоянной. Учитывая, что створаживание никоим образом не влияет на общую массу гребня, можно заключить, что функция M(R) должна возрастать хоть где-нибудь между точкой с координатами (0, 0) и точкой с координатами (1, 1). Она и возрастает, только происходит это на бесконечно большом числе бесконечно малых и группирующихся в очень тесные скопления участков, соответствующих полученным нами пластинам гребня. Подробнее о странных свойствах функции Кантора можно прочесть в работе [216].

Регуляризующие отображения. Чертова лестница может похвастаться одним выдающимся свойством: с ее помощью можно отобразить вопиющую неоднородность канторова гребня в нечто пристойно однородное и равномерное. Взяв два различных интервала одинаковой длины на вертикальной оси графика обратной канторовой лестницы, мы обнаружим, что масса двух соответствующих наборов пластин одинакова — хотя на вид они, как правило, сильно отличаются.

Поскольку самым буйным цветом наука цветет именно на почве однородности, такие регуляризующие преобразования часто способны преодолеть преграду между фрактальной иррегулярностью и математическим анализом.

Фрактальная однородность. Распределение масс в канторовом гребне удобно полагать фрактально однородным.

Канторово движение. Как и в случае рассматриваемой в виде движения кривой Коха или движения Пеано, иногда удобно интерпретировать ординату M(R) как время. Тогда обратная функция R(M) будет определять положение точки при канторовом движении в момент времени t. Движение это в высшей степени дискретно. В главах 31 и 31 мы рассмотрим его линейные и пространственные обобщения.

Фрактальная размерность. Сумма ширины всех ступеней чертовой лестницы равна сумме высот всех этих ступеней — каждая из сумм равна 1. Следовательно, чертова лестница имеет совершенно определенную длину, равную 2. Кривая конечной длины называется спрямляемой, а ее размерность D равна 1. Из этого примера хорошо видно, что размерность D=1 вполне совместима с наличием бесконечного множества особых точек — при условии, что они достаточно редко разбросаны.

< Кое-кому, возможно, захочется назвать представляемую вашему вниманию кривую фрактальной, однако для этого нам придется пойти на менее строгое определение фракталов, которое бы наряду с размерностью D основывалось еще на каких-то других понятиях. ►

Сингулярные функции. Канторова лестница представляет собой неубывающую и непостоянную сингулярную функцию — сингулярную в том смысле, что она непрерывна, но не дифференцируема. Ее производная обращается в нуль почти везде, к тому же она ухитряется непрерывно изменяться на множестве, длина — т. е. линейная мера — которого стремится к нулю.

Любая неубывающая функция может быть представлена в виде суммы некоторой сингулярной функции, некоторой функции, состоящей из дискретных скачков, и некоторой дифференцируемой функции. Два последних слагаемых являются классикой в математике и широко используются в физике. Сингулярную же составляющую большинство физиков считает абсолютно бесполезной патологией. Последнее мнение является абсолютно безосновательной чепухой — это заявление можно считать лейтмотивом настоящего эссе.

Чертовы лестницы в статистической физике. Публикация этого рисунка в эссе 1977 г. привлекла к чертовым лестницам внимание физиков и послужила стимулом для многочисленных исследований. Все чаще мне встречаются в книгах и статьях графики, напоминающие «занавес» на рис. 121 или занавес Фату на рис. 273. В этой связи рекомендую заглянуть в [9], где разрозненные — хотя и весьма важные — ранние исследования (например, [11], [218]) объединены с новыми разработками в данной области.

III ГАЛАКТИКИ И ВИХРИ

9 ФРАКТАЛЬНЫЙ ВЗГЛЯД НА СКОПЛЕНИЯ ГАЛАКТИК

В главах 6 и 7, призвав на помощь геоморфологию, мы ввели кривые Коха и Пеано, однако объекты наиболее значительных приложений теории фракталов находятся в несколько иных областях. Неспешно подбираясь к основным течениям в науке, мы рассмотрим в этой главе (и в двух последующих) два вопроса исключительной древности, важности и сложности.


Распределение звезд, галактики, скопления галактик и тому подобные материи издавна завораживают как любителей, так и специалистов, однако кластеризация до сих пор остается на периферии астрономии, да и всей астрофизики в целом. Главная причина заключается в том, что никто так и не в состоянии объяснить, почему распределение материи подчиняется иррегулярным иерархическим законам — по крайней мере, в определенном диапазоне масштабов. Во многих трудах, посвященных этой теме, можно встретить упоминание о феномене кластеризации, однако в серьезных теоретических исследованиях ее, как правило, поспешно заметают под ковер, утверждая, что галактики распределены вполне однородно — в масштабе, превышающем некий большой, но неопределенный порог.

Рассматривая ситуацию с менее фундаментальных позиций, можно сказать, что нежелание иметь дело с иррегулярным проистекает из отсутствия инструментов для его математического описания. От статистики требуется выбрать между двумя допущениями, из которых только одно можно счесть тщательно исследованным (асимптотическую однородность). Стоит ли удивляться, что результаты, мягко говоря, неубедительны?

Вопросы, однако, таковы, что от них трудно отмахнуться. Я считаю совершенно необходимым — параллельно с продолжением попыток объяснить кластеризацию — найти способ описать ее и смоделировать реальность чисто геометрическими средствами. Рассматривая эту тему с фрактальных позиций на протяжении нескольких глав настоящего эссе, мы рассчитываем с помощью недвусмысленных моделей показать, что полученные свидетельства предполагают такую степень кластеризации, которая далеко выходит за пределы, поставленные для нее существующими моделями.

Эту главу следует считать вводной: здесь мы познакомимся с одной весьма влиятельной теорией образования звезд и галактик, предложенной Хойлом, с основной формальной моделью их распределения, которой мы обязаны Фурнье д'Альбу (эта модель также известна как модель Шарлье), и, что самое важное, получим некоторые эмпирические данные. Мы покажем, что и теорию, и данные можно интерпретировать в рамках понятия о масштабно-инвариантной фрактальной пыли. Я настаиваю на том, что распределение галактик и звезд включает в себя некую зону самоподобия, внутри которой фрактальная размерность удовлетворяет неравенству 0<D<3. Кроме того, здесь вкратце изложены теоретические причины, согласно которым можно ожидать D=1, и, как следствие, обсуждается вопрос, почему наблюдаемая величина D составляет ~1,23.

Анонс. В главе 22 мы воспользуемся фрактальными инструментами для улучшения нашего понимания смысла космологического принципа, рассмотрим, как его можно и нужно модифицировать, и узнаем, почему такая модификация непременно требует случайности. Обсуждение скоплений в рамках усовершенствованной модели мы отложим до глав 22, 23 и с 32 по 35.

МОЖНО ЛИ ГОВОРИТЬ О ГЛОБАЛЬНОЙ ПЛОТНОСТИ МАТЕРИИ?

Начнем с тщательного рассмотрения концепции глобальной плотности материи. Как и в случае береговых линий, здесь все, на первый взгляд, выглядит очень простым, однако на деле очень быстро — и весьма интересно — запутывается. Для определения и измерения плотности начинают с массы M(R), сосредоточенной внутри сферы радиуса R с центром, совпадающим с центром Земли. Так оценивается приблизительная плотность, определяемая как

M(R)/[(4/3)πR3].

После этого величину R устремляют к бесконечности, а глобальная плотность определяется как предел, к которому сходится в этом случае приблизительная плотность.

Однако обязательно ли глобальная плотность сходится к положительному и конечному пределу? Если так, то скорость такого схождения оставляет желать лучшего, и это еще мягко сказано. Более того, оцеки предельной плотности, будучи рассмотрены во временной перспектив ведут себя довольно странно. По мере того как увеличивалась глубина наблюдаемой в телескоп Вселенной, приблизительная плотность на удивление систематически уменьшалась. Согласно де Вокулеру [104], уменьшение всегда было ∝RD−3. Наблюдаемый показатель D мно меньше 3 — в наилучшем приближении D=1,23.

Де Вокулер выдвинул тезис о том, что поведение величины приблизительной плотности отражает реальность, имея в виду, что M(R)∝RD. Эта формула вызывает в памяти классический результат для шара радиуса R, вложенного в евклидово пространство размерности E, — объем такого шара ∝RE. В главе 6 мы встречались с такой же формуле для кривой Коха, с той лишь разницей, что показателем там была не евклидова размерность E=2, а дробная фрактальная размерность. А в главе 8 мы получили формулу M(R)∝RD для канторовой пьи на временной оси (здесь E=1).

Все эти прецеденты заставляют (причем весьма настойчиво) предположить, что показатель де Вокулера D представляет собой не что иное, как фрактальную размерность.

ВХОДЯТ ЛИ ЗВЕЗДЫ В ДИАПАЗОН МАСШТАБНОЙ ИНВАРИАНТНОСТИ?

Очевидно, что диапазон масштабной инвариантности, в котором удовлетворяет неравенству 0<D<3, не должен включать в себя объекты с явно определенными границами — такие, например, как планеты. А вот входят ли в него звезды? Согласно данным, полученным Уэбби ком и приведенным в [135], массу Млечного Пути внутри сферы рад уса R вполне можно представить в виде M(R)∝RD, где величина экстраполируется с галактик. Мы, однако, продолжим наше обсуждение исключительно в галактических терминах.

СУЩЕСТВУЕТ ЛИ У ДИАПАЗОНА МАСШТАБНОЙ ИНВАРИАНТНОСТИ ВЕРХНИЙ ПОРОГ?

Вопрос о том, насколько далеко в сторону очень больших масштабов простирается диапазон, внутри которого 0<D<3, весьма противоречив, причем в последнее время он снова привлек к себе внимание. Многие авторы либо прямо заявляют, либо подразумевают, что этот диапазон допускает существование внешнего предела, соответствующего размерам скоплений галактик. Другие авторы выражают свое несогласие с этим мнением. Де Вокулер [104] утверждает, что «кластеризация галактик и, возможно, всех остальных форм материи является доминатной характеристикой структуры Вселенной во всех доступных наблюдению масштабах, причем нет никаких указаний на какое бы то ни было приближение к однородности; средняя плотность вещества неуклонно падает по мере того, как принимаются во внимание все большие объемы пространства, и у нас нет экспериментально подтвержденных оснований полагать, что эта тенденция не распространяется на значительно большие расстояния и меньшие значения плотности».

Дебаты между этими двумя школами, безусловно, весьма интересны и важны — для космологии, но не для нашего эссе. Даже если диапазон, в котором 0<D<3, имеет границы с обеих сторон, само его существование достаточно значительно для того, чтобы оправдать самое тщательное исследование.

В любом случае Вселенная (совсем как тот клубок ниток, о котором мы говорили в главе 6) располагает, по всей видимости, целым рядом различных эффективных размерностей. Если начать с масштабов порядка радиуса Земли, то первой встретившейся нам размерностью будет 3 (такова размерность твердых тел с четкой границей). Далее размерность падает до 0 (так как материя рассматривается как скопление изолированных точек). Далее идет весьма интересный участок, характеризуемый некой нетривиальной размерностью, удовлетворяющей неравенству 0<D<3. Если масштабно-инвариантная кластеризация продолжается до бесконечности, то на этом последнем значении D ряд эффективных размерностей и заканчивается. Если же существует конечный внешний порог, то к списку добавляется четвертый интервал размерностей, внутри которого точки теряют свою индивидуальность, и у нас на руках оказывается однородный газ, т. е. размерность снова возвращается к 3.

Самым же наивным представлением является то, согласно которому галактики распределены во Вселенной приблизительно однородно. В этом случае последовательность размерностей D сводится к трем значениям: 3, 0 и опять 3.

< Общая теория относительности утверждает, что при отсутствии материи локальная геометрия пространства стремится стать плоской и евклидовой, в то время как присутствие материи переводит ее в локально риманову. Здесь мы можем говорить о глобально плоской Вселенной, размерность которой равна 3 с локальными значениями D<3. Такой тип возмущений описан в [519], довольно туманной работе, автор которой приводит (с. 312) пример построения кривой Коха (см. главу 6), не ссылаясь при этом на самого Коха. ►

ВСЕЛЕННАЯ ФУРНЬЕ

Нам остается лишь построить фрактал, который удовлетворял бы правилу M(R)∝RD, и посмотреть, как он будет согласовываться с общепринятыми взглядами на Вселенную. Первая подробно описанная модель такого рода была предложена Э. Э. Фурнье д'Альбом (см. главу 40). Хотя книга Фурнье [152] представляет собой по большей части художественный вымысел, замаскированный под научное исследование, в ней все же содержится несколько чрезвычайно интересных соображений, которые мы вскоре обсудим. Сначала же, как мне кажется, следует описать структуру, предложенную Фурнье.

Начинаем построение с правильного восьмигранника, проекция которого представлена в центре рис. 141. Проекция показывает четыре угла квадрата, диагональ которого составляет 12 «единиц», и центр этого квадрата. Однако у восьмигранника есть еще две точки над и под нашей плоскостью на перпендикуляре, проведенном через центр квадрата, на одинаковом расстоянии в 6 «единиц» от этого центра.

Далее каждая точка заменяется шаром радиуса 1, который мы будем рассматривать как «звездный агрегат нулевого порядка». Наименьший шар, содержащий в себе все 7 первоначальных шаров, назовем «звездным агрегатом первого порядка». Агрегат второго порядка получается увеличением агрегата первого порядка в 1/r=7 раз и заменой каждого из новых шаров радиуса 7 копией агрегата первого порядка. Аналогичным образом, агрегат третьего порядка получается увеличением агрегата второго порядка в 1/r=7 раз и заменой каждого из шаров копией агрегата второго порядка. И так далее.

Короче говоря, при переходе между соседними порядками агрегации как число точек, так и радиус шаров увеличивается в 1/r=7 раз. Следовательно, для всякого значения R, которое является радиусом какого-либо агрегата, функция M0(R), определяющая количество точек, содержащихся в шаре радиуса R, имеет вид M0(R)=R. Для промежуточных R функция M0(R) принимает меньшие значения (достигая R/7), однако, согласно общей тенденции, M0(R)∝R.

Возможно также интерполировать агрегаты нулевого порядка последовательными этапами до агрегатов порядка —1, —2 и т. д. На первом этапе заменим каждый агрегат нулевого порядка копией агрегата первого порядка, уменьшенной в отношении 1/7, и так далее. При таком построении отношение M0(R)∝R остается истинным для все меньших значений R. После бесконечной экстра- и интерполяции мы получаем самоподобное множество размерности D=ln7/ln7=1.

Кроме того, размерность D=1 объекта в 3-пространстве вовсе не обязывает его непременно быть прямой линией да и любой другой спрямляемой кривой. Ему даже не обязательно быть связным. Каждая размерность D совместима с любой меньшей либо равной по величине топологической размерностью. В частности, топологическая размерность бесконечной в обе стороны вселенной Фурнье равна 0, так как она является вполне несвязной «пылью».

РАСПРЕДЕЛЕНИЕ МАССЫ: ФРАКТАЛЬНАЯ ГОМОГЕННОСТЬ

Шаг от геометрии к распределению массы представляется мне как нельзя более очевидным. Если каждый звездный агрегат нулевого порядка нагрузить единичной массой, то масса M(R) внутри шара радиуса R>1 идентична величине M0(R), а следовательно, ∝R. Кроме того, чтобы получить агрегаты порядка -1 из агрегатов нулевого порядка, необходимо разбить шар, который мы считали однородным и обнаружить, что он состоит из семи меньших шаров. На этом этапе правило M(R)∝R распространяется и на радиусы, меньшие единицы.

Рассматривая полученное распределение массы по всему 3-пространству, мы видим, что оно чрезвычайно неоднородно, хотя на фрактале Фурнье ему в однородности нет равных. (Вспомните рис. 120.) В частности, любые две геометрически одинаковые части вселенной Фурнье содержат одинаковые массы. Предлагаю такое распределение массы называть фрактально гомогенным.

< Предыдущее определение сформулировано в терминах масштабно-инвариантных фракталов, но концепция фрактальной гомогенности в общем случае гораздо шире. Она применима к любому фракталу, для которого положительна и конечна хаусдорфова мера в размерности D. Фрактальная гомогенность требует, чтобы масса, содержащаяся в множестве, была пропорциональна хаусдорфовой мере этого множества. ►

ВСЕЛЕННАЯ ФУРНЬЕ КАК КАНТОРОВА ПЫЛЬ. РАСШИРЕНИЕ Д0 D≠1

Я надеюсь, что читателя не сбило с толку небрежное употребление фрактальной терминологии в начальных разделах этой главы. Очевидно, что Фурнье, сам того не осознавая, шел путем, параллельным пути своего современника Кантора. Основная разница заключается в том, что конструкция Фурнье вложена в пространство, а не в интервал на прямой. Для вящего усиления сходства достаточно заменить шарообразные агрегаты Фурнье на блоки (заполненные кубы). Каждый агрегат нулевого порядка становится блоком, длина стороны которого равна 1, и включает в себя 7 меньших агрегатов со стороной 1/7: центр одного из них совпадает с центром исходного куба, а остальные шесть касаются центральных подквадратов на гранях исходного куба.

Ниже мы рассмотрим, как получил значение D=1 из фундаментального физического феномена Фурнье, и как к тому же результату пришел Хойл. С геометрической же точки зрения, случай D=1 является особым, даже если на протяжении всего построения придерживаться формы восьмигранника и значения N=7. Так как шары не перекрывают друг друга, величина 1/r может принимать любое значение в интервале от 3 до бесконечности, в результате чего получаем закон M(R)∝RD, где D=ln7/ln(1/r) на всем интервале от 0 до ln7/ln3=1,7712.

Далее, взяв любое D, удовлетворяющее неравенству D<3, можно, изменяя N, легко построить различные варианты модели Фурнье с данной размерностью.

МОДЕЛЬ ШАРЛЬЕ И ДРУГИЕ ФРАКТАЛЬНЫЕ ВСЕЛЕННЫЕ

Вышеописанные построения не избежали ни одного из недостатков, характерных для первых фрактальных моделей. Сильнее всего бросается в глаза то, что модель Фурнье, подобно модели кривой Коха в главе 6 и модели канторовой пыли в главе 8, до гротескности правильна. Для исправления ситуации Шарлье [77, 78] предложил предоставить N и r возможность переходить с одного иерархического уровня на другой, принимая значения Nm и rm.

Репутация Шарлье в научных кругах была столь высока, что, несмотря на все его щедрые похвалы Фурнье, высказанные на всех ведущих языках науки того времени, даже исходную модель вскоре стали приписывать знаменитому интерпретатору, а не никому не известному автору. Новая модель широко обсуждалась в то время, особенно в [516, 517, 518, 519]. Более того, она привлекла внимание весьма влиятельного Эмиля Бореля, чьи комментарии в [45] очень проницательны, хотя и несколько суховаты. Однако с той поры, если не считать нескольких судорожных попыток вытащить ее на свет, модель Шарлье пребывает в забвении (не очень убедительные причины такого забвения изложены в [445], с. 20-22 и 408-409). Тем не менее, умирать она упорно не желает. Основная идея к сегодняшнему дню была уже много раз открыта разными исследователями независимо друг от друга, особенно рекомендую заглянуть в [303]. (А еще см. раздел ПОЛЬ ЛЕВИ в главе 40.) Наиболее важным я, однако, считаю тот факт, что фрактальная основа вселенной Фурнье имплицитно присутствует в рассуждениях о турбулентности и галактиках в работе [579] (см. главу 10) и в модели галактического генезиса, предложенной Хойлом в [229] (ее мы рассмотрим чуть ниже).

Главная фрактальная составляющая присутствует и в моих моделях (см. главы с 32 по 35).

В этом свете возникает вопрос: может ли модель распределения галактик не быть фракталом с одним или двумя порогами? Думаю, что нет. Если мы согласны с тем, что распределение должно быть масштабно-инвариантным (причины необходимости этого изложены в главе 11), и с тем, что множество, на котором концентрируется материя, не является стандартным масштабируемым множеством, у нас не остается иного выбора, кроме признания фрактальности этого множества.

Принимая во внимание важность масштабной инвариантности, нетрудно понять, почему немасштабируемое обобщение Шарлье модели Фурнье было с самого начала обречено. < Оно, кстати, позволяет величине lnNm/ln(1/rm) изменяться в зависимости от то в пределах двух границ, Dmin>0 и Dmax<3. Вот и еще одна тема для обсуждения: эффективная размерность не обязательно должна иметь одно-единственное значение, это значение может плавать между верхним и нижним пределами. К этой теме мы еще вернемся в главе 15. ►

ПОЧЕМУ ФУРНЬЕ ОЖИДАЛ D = 1?

Обсудим теперь весьма впечатляющую аргументацию, которая привела Фурнье к выводу, что показатель D должен быть равен 1 (см. [152], с. 103). Эта аргументация сама по себе является серьезным доводом в пользу того, чтобы имя ее автора не было забыто.

Рассмотрим галактический агрегат произвольного порядка с массой M и радиусом R. Отбросив бесплодные сомнения и применив к данному случаю формулу для объектов, обладающих сферической симметрией, допустим, что гравитационный потенциал на поверхности сферы равен GM/R (G — гравитационная постоянная). Звезда, падающая на нашу Вселенную, сталкивается с ее поверхностью на скорости V=(2GM/R)1/2.

Согласно Фурнье, из того факта, что ни одна доступная наблюдению звезда не движется со скоростью, превышающей 1/300 от скорости света, можно вывести очень важное заключение. Масса, содержащаяся внутри мирового шара, возрастает прямо пропорционально его радиусу, а не объему, или, иными словами, плотность вещества внутри мирового шара обратно пропорциональна площади его поверхности... Поясним последнее утверждение — потенциал на поверхности сферы всегда одинаков, так как он прямо пропорционален массе вещества внутри сферы и обратно пропорционален расстоянию от центра. Как следствие, звездные скорости, близкие к скорости света, не являются распространенным явлением в любой части Вселенной.

СТВОРАЖИВАНИЕ ПО ХОЙЛУ; КРИТЕРИЙ ДЖИНСА

Иерархическое распределение фигурирует и в теории Хойла (см. [229]), согласно которой галактики и звезды образуются посредством каскадного процесса, причем начинается этот процесс с однородного газа.

Рассмотрим газовое облако массы M, нагретое до температуры T и распределенное с однородной плотностью внутри шара радиуса R. Как показал Джине, при M0/R0=JkRT/G возникает «критическая» ситуация. (Здесь k — постоянная Больцмана, a J — числовой коэффициент.) Находясь в критическом состоянии, первичное газовое облако нестабильно и неизбежно должно сжаться.

Хойл постулирует, что (а) величина M0/R0 достигает критического значения где-то в самом начале, (б) сжатие прекращается, когда объем газового облака уменьшается до 1 /25 от первоначального объема, и (в) каждое облако на этом этапе распадается на пять меньших облаков с одинаковыми размерами, массами M1=M0/5 и радиусами R1=R0/5. То есть процесс приходит к тому же месту, на каком начался: результатом его является нестабильное состояние, за которым следует второй этап сжатия и разделения, затем — третий и т. д. Створаживание прекращается лишь тогда, когда облака становятся настолько непрозрачными, что задерживают образующееся при сжатии газа тепло внутри.

Как и в различных других областях, в которых встречаются подобные каскадные процессы, я предлагаю и к этому случаю применить общую терминологию, т. е. пять облаков мы будем называть творогом, а сам каскадный процесс — створаживанием. Как я уже упоминал при введении последнего термина, я просто не мог удержаться от аллюзий с галактиками.

Фурнье ради удобства графического изображения своей модели вводит N=7, Хойл же утверждает, что физически обоснованным является значение N=5. Детализация геометрической иллюстрации Фурнье выходит за всякие — разумные или необходимые — рамки. Высказывания Хойла относительно пространственной структуры творога, напротив, довольно туманны. Детальной реализации модели Хойла нам придется подождать до главы 23, где мы рассмотрим случайное створаживание. Как бы то ни было, упомянутые расхождения не имеют принципиального значения: главным является тот факт, что r=1/N, т. е. показатель D=1 должен стать неотъемлемой частью нашего построения, если мы хотим, чтобы створаживание завершалось тем же состоянием, с которого оно начиналось, — а именно, нестабильностью Джинса.

Кроме того, если длительность первого этапа принять за 1, то, согласно данным по газовой динамике, длительность того этапа составит 5−m. Следовательно, общая длительность всего процесса, состоящего из бесконечного количества этапов, не превышает 1,2500.

ЭКВИВАЛЕНТНОСТЬ ПОДХОДОВ ФУРНЬЕ И ХОЙЛА К ВЫВОДУ D =1

На границе нестабильного газового облака, удовлетворяющего критерию Джинса, скорость и температура связаны соотношением V2/2=JkT, так как GM/R равно и V2/2 (Фурнье), и JkT (Джине). Вспомним теперь о том, что в статистической термодинамике температура газа прямо пропорциональна среднеквадратической скорости его молекул. Значит, из комбинации критериев Фурнье и Джинса можно предположить, что на границе облака скорость падения макроскопического объекта прямо пропорциональна средней скорости его молекул. Тщательный анализ роли температуры в критерии Джинса непременно покажет, что эти два критерия эквивалентны. < Вероятнее всего, аналогия распространяется и на справедливость отношения M(R)∝R внутри галактик, о чем сообщает Валленквист в [583]. ►

ПОЧЕМУ D = 1,23, А НЕ D = 1?

Расхождение между эмпирическим значением D=1,23 и теоретическим значением Фурнье и Хойла D=1 поднимает важную проблему. П. Дж. Э. Пиблс рассмотрел ее в 1974 г. с позиций теории относительности. В его труде [467] получили исчерпывающее освещение физический и статистический (но не геометрический) аспекты упомянутой проблемы.

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ НЕБА

Небо — это проекция Вселенной. Для получения этой проекции каждая точка Вселенной сначала описывается сферическими координатами ρ, θ и φ, а затем координата ρ заменяется на 1. Если Вселенная представляет собой фрактал с размерностью D, а начало системы отсчета принадлежит этой самой Вселенной (см. главу 22), то структура проекции, как правило, определяется следующей альтернативой: D>2 подразумевает, что проекция покрывает некую ненулевую область неба, в то время как D<2 означает, что сама проекция имеет фрактальную размерность D. < Как показано на рис. 141 и 143, «правило» не лишено исключений, обусловленных структурой фрактала и/или/ выбором точки отсчета. О таких правилах часто говорят «истинно с вероятностью 1». ►

ЗАМЕЧАНИЕ ПО ПОВОДУ ЭФФЕКТА ПЫЛАЮЩЕГО НЕБА (НЕВЕРНО НАЗЫВАЕМОГО ПАРАДОКСОМ ОЛЬБЕРСА)

Правило из предыдущего раздела имеет непосредственное отношение к мотивации, побуждавшей различных исследователей (включая Фурнье) открывать собственные варианты фрактальной Вселенной. Они понимали, что такие вселенные геометрически «отменяют» эффект пылающего неба, который еще часто (но неверно) называют парадоксом Олъберса. Если допустить, что распределение небесных тел равномерно (т. е. D=3 во всех масштабах), то небо над нами должно быть почти равномерно освещено и ночью, и днем, причем яркость этого освещения должна быть сравнима с солнечной.

Парадокс этот физиков больше не интересует, будучи сведен на нет теорией относительности, теорией расширяющейся Вселенной и другими соображениями. Однако его кончина имела занятный побочный эффект: многочисленные комментаторы принялись цитировать свои излюбленные объяснения эффекта пылающего неба — одни в надежде оправдаться за пренебрежительное отношение к кластеризации, другие же, напротив, напрочь отрицая ее реальность. Очень странная, надо сказать, точка зрения. Даже если предположить, что кластеризация галактик никак не связана с отсутствием эффекта пылающего неба, она все равно существует — и требует надлежащего изучения. К тому же, как мы увидим в главе 32, концепция расширяющейся Вселенной совместима не только со стандартной, но и с фрактальной гомогенностью.

Эффект пылающего неба объясняется очень просто. Поскольку количество излучаемого звездой света прямо пропорционально площади ее поверхности, количество света, достигающее наблюдателя, находящегося от звезды на расстоянии R, должно быть ∝1/R2, но площадь видимой поверхности звезды также ∝1/R2. Таким образом, отношение количества света к видимому сферическому углу не зависит от R. Кроме того, если распределение звезд во Вселенной равномерно, то практически любое направление взгляда рано или поздно встретит какую-нибудь звезду. Следовательно, небо освещено звездным светом равномерно и выглядит пылающим. (Лунный диск в этом случае образует исключительно темную область — по крайней мере, при отсутствии атмосферной диффузии.)

Если же допустить, что Вселенная фрактальна и что ее размерность D<2, то парадокс разрешается сам собой. В этом случае проекция Вселенной на небесный свод является фрактальным множеством той же размерности D, т. е. множеством нулевой площади. Даже если звезды имеют ненулевой радиус, большая часть направлений уходит в бесконечность, не встречая на своем пути ни одной звезды. Если смотреть вдоль этих направлений, то мы увидим только черноту ночного неба. Если за интервалом, в котором D<3, следует интервал, в котором D=3, то фон неба будет не строго черным, но чрезвычайно слабо освещенным.

На эффект пылающего неба обратил внимание еще Кеплер вскоре после того, как Галилей в «Звездном послании» благожелательно отозвался об идее безграничной Вселенной. В своей «Беседе со звездным посланцем» (1610) Кеплер высказал следующее возражение: «Нимало не колеблясь, Вы заявляете, что взгляду доступны более 10000 звезд... Если это так и если [звезды] той же природы, что и наше Солнце, то почему все эти солнца в совокупности не превосходят наше Солнце в яркости?... Может быть их затмевает эфир? Ни в малейшей степени... Совершенно очевидно, что наш мир никоим образом не может принадлежать беспорядочному рою из бесчисленных иных миров» (см. [500], с. 34-35).

Вывод был довольно спорный, однако об аргументации не забыли — свидетельством тому может служить замечание Эдмунда Галлея (сделанное им в 1720 г.): «Я слышал еще об одном возражении, которое гласит, что если бы число неподвижных звезд было более чем конечным, то весь свод их видимой сферы сплошь светился бы». Позднее это возражение обсуждалось де Шезо и И. Г. Ламбертом, однако авторство его приписали большому другу Гаусса немецкому астроному Ольберсу. Термин «парадокс Ольберса», которым с тех пор называют это противоречие, скандален, но симптоматичен. Результаты наблюдений, попавшие в разряд «не подлежащих классификации» (см. с. 51), часто приписываются первому же представителю Официального Большинства, который украсит их вполне классифицируемой оберткой, пусть даже и временной. Обсуждение предмета в исторической перспективе можно найти в [160, 438, 445, 108, 601, 239, 82, 197].

ЗАМЕЧАНИЕ О НЬЮТОНОВСКОМ ТЯГОТЕНИИ

Преподобный Бентли все донимал Ньютона одним наблюдением, тесно связанным с эффектом пылающего неба: если распределение звезд однородно, то сила, с какой они действуют друг на друга, бесконечна. Можно добавить, что их гравитационный потенциал также бесконечен. И что любое распределение, в котором M(R)∝RD, даст при больших R бесконечный потенциал во всех случаях, кроме D<1. Современная теория потенциала (теория Фростмана) подтверждает тот факт, что между ньютоновским тяготением и значением D=1 существует некая особенная связь. Полученный Фурнье и Хойлом показатель D=1 также следует отнести к проявлениям этой связи. < Положение Фурнье о том, что «гравитационный потенциал на поверхности сферы всегда одинаков», является центральным в современной теории потенциала. ►

ЗАМЕЧАНИЕ О ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

< У де Вокулера (см. [104]) сказано: «Согласно теории относительности, следует считать, что для того, чтобы шар из стационарного вещества был видимым в оптическом диапазоне, его радиус R должен быть больше предела Шварцшильда RM=2GM/c2, где c — скорость света. На графике зависимости средней плотности р различных космических систем от их характеристического радиуса R точка ρM=3c28πGRM2 определяет верхний предел. Отношение ρ/ρM можно назвать коэффициентом заполнения Шварцшильда. Для наиболее распространенных астрономических тел (звезд) или систем (галактик) коэффициент заполнения очень мал, порядка 10−4÷10−6». Квадрат отношения скоростей, постулированный Фурнье, равен 300−2~10−5 — как раз в середине упомянутого интервала. ►

АГГЛЮТИНИРОВАННАЯ ФРАКТАЛЬНАЯ ВСЕЛЕННАЯ?

Многие исследователи полагают, что можно объяснить образование звезд и других небесных объектов с помощью восходящего каскада (т. е. постепенной агглютинации сильно рассеянных частиц пыли во все большие куски), не желая ничего слышать о нисходящем каскаде а 1а Хойл (т. е. постепенной фрагментации очень больших и рассеянных масс на все меньшие части).

Похожая альтернатива возникает в связи с каскадами, постулированными в теории турбулентности (см. главу 10). Ричардсонов каскад протекает по нисходящей ко все более мелким вихрям, однако в процессе могут участвовать и восходящие каскады (см. главу 40, раздел ЛЬЮИС ФРАЙ РИЧАРДСОН). Таким образом, можно надеяться, что взаимоотношения между нисходящими и восходящими каскадами получат вскоре надлежащее объяснение.

ФРАКТАЛЬНЫЕ МАССИВЫ ТЕЛЕСКОПОВ

Вряд ли можно найти более подходящий завершающий штрих для этой дискуссии, чем замечание относительно инструментов, с помощью которых производится наблюдение галактик. Дайсон [126] предлагает для улучшения качества наблюдения заменять большие одиночные телескопы массивами из малых телескопов. Диаметр каждого из малых телескопов должен составлять около 0,1м (размер наименьшего оптически существенного атмосферного возмущения), их центры должны образовывать фрактально иерархическую схему, а соединение между телескопами обеспечат интерферометры Карри. Грубый анализ приводит к выводу, что в качестве подходящего значения размерности следует взять 2/3. Вот заключение самого Дайсона: «Трехкилометровый массив из 1024 десятисантиметровых телескопов, соединенных между собой 1023 интерферометрами, — не самое практичное на сегодняшний день предложение. [Я выдвинул его] в качестве теоретической идеи, чтобы показать, что здесь, в принципе, можно сделать».

ОБЗОР СЛУЧАЙНЫХ ФРАКТАЛЬНЫХ МОДЕЛЕЙ СКОПЛЕНИЙ ГАЛАКТИК

Если верить тому, что можно эффективно описать распределение галактик с помощью нечаянно обнаруженных фрактальных моделей, не отличающихся ни сложностью, ни универсальностью, не стоит удивляться, что намеренно фрактальные случайные модели могут снабдить нас гораздо более эффективными описаниями. Начнем с того, что мы сможем значительно лучше понять створаживание Хойла, рассмотрев его в надлежащем окружении, т. е. среди случайных фракталов (см. главу 23). Еще большей значимостью обладают, на мой взгляд, разработанные мною случайные модели, о которых мы поговорим в главах с 32 по 35. Один из доводов в пользу рассмотрения нескольких моделей заключается в том, что за улучшение качества описания приходится «платить» возросшей сложностью. Второй довод — каждая модель строится на особой фрактальной пыли, каждая из которых заслуживает отдельного рассмотрения. Рассмотрим вкратце эти модели в логическом порядке.

Примерно в 1965 г. я задался целью снабдить соотношение M(R)∝RD при D<3 соответствующей моделью, в которой «центр Вселенной» отсутствовал бы как понятие. Впервые я достиг этой цели с помощью модели случайного блуждания, описываемой в главе 32. Затем, в качестве альтернативы, я разработал модель трем, сущность которой заключалась в том, что из пространства вырезалась некая совокупность взаимно независимых и размещенных случайным образом трем случайного радиуса, причем верхняя граница радиуса могла достигать верхнего порога L, который мог быть конечным или бесконечным.

Поскольку обе модели были выбраны исключительно из соображений формальной простоты, меня приятно удивило наличие у них прогнозирующей ценности. Мои теоретические корреляционные функции [383] оказались в хорошем согласии с подобранными по кривым функциями, приведенными у Пиблса (см. [467], с. 243-249). < Точнее, два моих приближения совпали на двухточечной корреляции, случайные блуждания дали хорошую трех- и плохую четырехточечную корреляции, а сферические тремы оказались на высоте во всех известных корреляциях. ►

К сожалению, примеры, генерируемые этими моделями, выглядят совершенно нереалистично. Воспользовавшись понятием, которое я разработал специально для этой цели и о котором расскажу в главе 35, можно сказать, что мои ранние модели демонстрируют неприемлемые лакунарные свойства. В случае модели трем этот недостаток можно исправить, введя более сложные формы трем. Для модели случайного блуждания я использовал менее лакунарный «субординатор».

Таким образом, изучение скоплений галактик значительно стимулировало развитие фрактальной геометрии. В настоящее же время диапазон применений фрактальной геометрии при исследовании скоплений галактик значительно расширился, выйдя далеко за рамки тех генеральных уборок и отладок, что мы предприняли в этой главе.

ОГРАНЕННЫЕ АЛМАЗЫ, ПОХОЖИЕ НА ЗВЕЗДЫ

Распределение алмазных залежей в земной коре очень напоминает распределение звезд и галактик на небесном своде. Представьте себе большую карту мира, на которой каждая алмазная копь, каждое богатое месторождение — разрабатываемое сейчас или уже заброшенное — отмечено булавкой. Рассматривая карту с достаточно большого расстояния, мы увидим, что плотность распределения булавок чрезвычайно неравномерна. Тут и там разбросано несколько отдельных булавок, однако большая часть концентрируется в немногочисленных благословенных (или проклятых) областях. Поверхность земли внутри этих областей, в свою очередь, вовсе не вымощена равномерно алмазами. Взглянув на каждую из них вблизи, мы вновь увидим, что большая часть территории остается пустой, в то время как немногочисленные рассеянные подобласти демонстрируют значительно возросшую концентрацию алмазов. Этот процесс можно продолжать на протяжении нескольких порядков величины.

Не возникает ли у вас неодолимого желания применить в этом контексте концепцию створаживания? Со своей стороны скажу, что подобная модель существует, предложил ее де Вис, а рассмотрим мы ее в главе 39 в разделе НЕЛАКУНАРНЫЕ ФРАКТАЛЫ.

В книге Фурнье [152] к этой иллюстрации предлагается следующее пояснение: «Мультивселенная, построенная по принципу креста или восьмигранника, не является планом нашего мира, но помогает показать возможность существования бесконечного ряда подобных последовательных вселенных без возникновения эффекта «пылающего неба». Количество материи в каждой мировой сфере прямо пропорционально ее радиусу. Это условие является необходимым для соблюдения законов тяготения и излучения. В некоторых направлениях небо выглядит совершенно черным — несмотря на то, что ряд вселенных бесконечен. «Мировым числом» в данном случае является N=7, а не 1022, как в реальном мире».

В терминах, вводимых в главе 34, вселенная с D=1 и N=1022 обладает очень низкой лакунарностью, но чрезвычайно стратифицирована.

Если мы попытаемся передать рис. 141 в точном масштабе, то его не только будет очень сложно напечатать и рассмотреть, он еще и окажется способен ввести зрителя в заблуждение. В самом деле, на нем изображена вовсе не Вселенная с размерностью D=1, а всего лишь ее проекция на плоскость, причем размерность этой проекции равна D=ln5/ln7~0,8270<1. Поэтому, дабы не оставить ложного впечатления, спешим представить регулярную плоскую конструкцию в духе Фурнье с размерностью D=1 и коэффициентом подобия 1/r=5 вместо 1/r=7. Построение продолжено на один этап дальше, чем это возможно на рис. 141.

10 ГЕОМЕТРИЯ ТУРБУЛЕНТНОСТИ; ПЕРЕМЕЖАЕМОСТЬ

Исследование турбулентности — одна из старейших, сложнейших и наиболее неблагодарных глав в истории физики. Простого здравого смысла и кое-какого опыта достаточно, чтобы показать, что в одних условиях поток газа или жидкости остается гладким (в специальной терминологии — «ламинарным»), а в других — нет. Вот только где провести границу? Следует ли обозначать термином «турбулентность» все негладкие потоки, включая большую часть метеорологических и океанографических феноменов? Или лучше будет сузить значение этого термина до какого-то одного класса, и если да, то до какого? Создается впечатление, что у каждого ученого имеются собственные ответы на эти вопросы.


К счастью, нам не нужно разбираться здесь с этими расхождениями во мнениях, так как мы намерены заниматься лишь бесспорно турбулентными потоками, самой заметной характеристикой которых является полное отсутствие сколько-нибудь определенного масштаба длины: в рамках одного процесса соседствуют «вихри» всевозможных размеров. Эта характерная черта хорошо видна на рисунках Леонардо и Хокусая. Она указывает на то, что турбулентность глубоко чужда духу «старой» физики, которая имела дело лишь с явлениями, имеющими вполне определенный масштаб. И та же самая причина включает изучение турбулентности в круг наших непосредственных интересов.

Кому-то из читателей, наверное, известно, что практически все исследователи турбулентности сосредоточивались на аналитическом рассмотрении потока жидкости, совершенно не касаясь геометрической стороны проблемы. Хочется верить, что эта несбалансированность не отражает предубежденного отношения к геометрии. По сути дела, многие геометрические формы, участвующие в турбулентности, легко увидеть или сделать видимыми, и они прямо-таки напрашиваются на надлежащее описание. Однако им не удавалось привлечь к себе заслуженного внимания до появления фрактальной геометрии. Потому что, как я с самого начала и предполагал, турбулентность включает в себя множество фрактальных аспектов; о некоторых из них мы поговорим в этой и последующих главах.

Здесь необходимо сделать две оговорки. Во-первых, мы оставим в стороне проблему возникновения турбулентности в ламинарном потоке. У меня есть серьезные основания полагать, что в это возникновение также вовлечены некоторые, весьма важные, фрактальные моменты, однако они еще недостаточно разъяснены и поэтому их еще рано обсуждать здесь. Во-вторых, мы не намерены затрагивать такие периодические структуры, как ячейки Бенара и дорожки Кармана.

Начинается глава с призывов о более геометрическом подходе к турбулентности и об использовании при ее исследовании фракталов. Призывы эти многочисленны, но весьма кратки, так как включают в себя в основном предположения с очень небольшим (пока) количеством практических результатов.

После этого мы сосредоточимся на проблеме перемежаемости, которую я довольно активно исследовал. Самый важный из моих выводов состоит в том, что область рассеяния, т. е. пространственное множество, на котором концентрируется турбулентное рассеяние, может быть смоделировано фракталом. Из произведенных с различными целями измерений можно заключить, что размерность D этой области лежит где-то в районе 2,5-2,6, но, вероятно, не превышает 2,66.

К сожалению, у нас не получится построить точную модель, пока мы не определим топологические свойства области рассеяния. В частности, представляет ли она собой пыль, извилистую разветвленную кривую (вихревую трубу) или волнистую слоистую поверхность (вихревой лист)? Первое предположение маловероятно, а второе и третье предполагают модели, похожие на разветвленные фракталы из главы 14. Однако принять такое решение мы с вами пока не можем. Прогресс на новом фрактальном фронте никак не помогает нам разобраться с фронтом старым, топологическим. Наши знания о геометрии турбулентности все еще пребывают в зачаточном состоянии.

Большая часть материала этой главы не требует какой-либо специальной подготовки. < Но специалист наверняка заметит, что часть фрактального анализа турбулентности представляет собой геометрический аналог аналитического анализа корреляций и спектров. Отношения между теориями турбулентности и вероятности — старая история. В самом деле, самые первые исследования Дж. И. Тейлора оказались вторым по значимости (после броуновского движения Перрена) фактором, оказавшим серьезное влияние на создание Норбертом Винером математической теории стохастических процессов. Спектральный анализ уже давно вернул (даже с процентами) все, что он «занимал» в тогдашних исследованиях турбулентности. Настало время и для теории турбулентности воспользоваться достижениями современной стохастической геометрии. В частности, спектр Колмогорова имеет геометрический аналог, который мы рассмотрим в главе 30. ►

ОБЛАКА, КИЛЬВАТЕРНЫЕ СЛЕДЫ, РЕАКТИВНЫЕ СТРУИ И Т. Д.

Общей задачей геометрии турбулентности является описание формы границы области, внутри которой проявляется какое-либо характерное свойство жидкости. В качестве яркого примера таких областей можно назвать нагромождение друг на друга валов как в обычных (водяных) облаках, так и в облаках, образуемых вулканическими извержениями или ядерными взрывами. На этом этапе нашего эссе и в самом деле трудно избавиться от ощущения, что раз уж существует интервал масштабов, в котором облако, можно сказать, имеет вполне определенную границу, то границы облаков просто обязаны быть фрактальными поверхностями. Это относится и к картинке, которую дает наступающий шторм на экране радара. (Первое подтверждение этого предположения можно найти в главе 12.)

И все же я предпочитаю иметь дело с более простыми формами. Мы можем рассмотреть турбулентность внутри ограниченной области, окруженной со всех сторон ламинарной жидкостью — скажем, кильватерный след или реактивную струю. В самом грубом приближении, каждая из этих областей представляет собой цилиндр. Если же рассмотреть ее границу подробнее, мы обнаружим целую иерархию выступов и впадин, величина которых возрастает с увеличением так называемого числа Рейнольдса — классической гидродинамической характеристики. Эта отчетливо видимая сложная «локальная» структура больше напоминает не цилиндр, а веревку с множеством плавающих вокруг распущенных концов. Типичное поперечное сечение такой фигуры уже совершенно не похоже на окружность, а оказывается ближе к кривой Коха и еще ближе к наиболее изрезанным береговым линиям с островами, рассмотренным в главах 5 и 28. В любом случае, граница реактивной струи выглядит фрактальной. Топология присутствующих в ней вихревых колец, безусловно, интересна, но не описывает всей структуры.

Прежде чем мы перейдем к следующему замечанию, я хотел бы, чтобы читатель представил мысленным взором картину какой-нибудь кильватерной струи — скажем, симпатичное нефтяное пятно, расплывающееся за вышедшим из строя танкером. Описывающий такую струю, в самом грубом приближении, «цилиндр» приобретает довольно сложную структуру: он совершенно теряет свою цилиндрическую форму, так как его поперечное сечение быстро расширяется по мере удаления от корабля, а его уже вовсе не прямая «ось» начинает демонстрировать всевозможные изгибы, типичный размер которых также увеличивается с увеличением расстояния от корабля.

Похожие свойства были обнаружены и в турбулентности, вызванной сдвигом относительно друг друга жидких масс, находящихся в соприкосновении (см. [56, 58]). Получающиеся в результате сцепленные структуры («животные») вызывают сейчас широкий интерес. Их внешняя форма лишена каких бы то ни было фрактальных признаков, однако иерархия тонких деталей изгибов границы между жидкостями демонстрирует поразительно фрактальную структуру.

В качестве еще одного примера такого рода можно привести знаменитое Красное пятно в атмосфере Юпитера.

Похожие, но все же другие задачи встают перед исследователем Гольфстрима. Гольфстрим не является единым морским течением с четкой границей — он делится на множество извилистых ответвлений, причем эти ветви, в свою очередь, также делятся и ветвятся. Было бы весьма полезно получить подробное описание его склонности к ветвлению — нет никакого сомнения, без фракталов здесь не обошлось.

ИЗОТЕРМЫ, ДИСПЕРСИЯ И Т.Д.

Интересно также было бы исследовать форму поверхностей постоянной температуры или изоповерхностей любой другой скалярной характеристики потока. Изотермы можно очерчивать с помощью поверхности, окружающей быстроразмножающийся планктон, который живет только при температуре воды, превышающей 45°, и занимает весь доступный ему объем. Граница такого пузыря чрезвычайно изрезана и искривлена; в конкретной модели из главы 30 граница очевидно фрак- тальна.

Целый широкий класс геометрических задач возникает в том случае, когда среда турбулентна во всем своем объеме; при этом взаимодействующие области отличает друг от друга какая-либо «пассивная» или инертная характеристика, которая никак не влияет на поток. Лучшим примером здесь будет рассеиваемая турбулентностью капля краски. Во все стороны от капли расходятся хорошо видимые бесконечно ветвящиеся языки всевозможных форм и размеров — и ни существующие методы анализа, ни стандартная геометрия не смогут оказать нам сколько-нибудь существенную помощь в описании образующихся фигур. На рис. 85 и в статье [386] вы найдете доводы в пользу фрактальной природы этих фигур.

ДРУГИЕ ГЕОМЕТРИЧЕСКИЕ ВОПРОСЫ

Турбулентность при ясном небе. Изученные мною разрозненные источники дают возможность сделать вывод, что несущее множество этого феномена фрактально.

Поток вдоль фрактальной границы. Еще один типичный случай, в котором гидромеханике не обойтись без фракталов (см. рис. 74 и 104).

Растягивание вихрей. Движение жидкости заставляет вихри растягиваться, а растягиваемый вихрь должен сплющиваться, чтобы сохранить фиксированный объем при увеличивающейся длине. Я предполагаю, что в пределах масштабной инвариантности потока форма вихря стремится к фрактальной.

Траектория частицы в жидкости. В грубом приближении, навеянном птолемеевой моделью планетарного движения, представим себе частицу, которую несет вертикально вверх с единичной скоростью общее течение жидкости и которая испытывает возмущающее воздействие иерархии вихрей, каждый из которых совершает вращательное движение в горизонтальной плоскости. Результирующие функции x(t)−x(0) и y(t)−y(0) представляют собой суммы косинусоид и синусоид. Если высокочастотные члены очень слабы, то траектория частицы непрерывна и дифференцируема, а значит спрямляема, и ее размерность равна D=1. Если же высокочастотные члены сильны и достигают 0, то траектория фрактальна с размерностью D>1. Предположив, что вихри самоподобны, мы получаем траекторию, идентичную знаменитому пугалу математического анализа: функции Вейерштрасса (см. главы 2, 39 и 41). Это приводит нас к вопросу: можно ли связать переход всего объема жидкости в состояние турбулентности с условиями, при которых траектория движущейся в этой жидкости частицы фрактальна?

ПЕРЕМЕЖАЕМОСТЬ ТУРБУЛЕНТНОСТИ

Турбулентность в конце концов заканчивается рассеянием: благодаря вязкости жидкости энергия видимого движения преобразуется в тепло. В ранних теориях предполагалось, что это рассеяние однородно в пространстве. Однако надежды на то, что модель «гомогенной турбулентности» может иметь хоть какой-то смысл были рассеяны Ландау и Лифшицем [286], которые отмечают, что одни области характеризуются высокой степенью рассеяния, тогда как в других по сравнению с первыми рассеяние практически отсутствует. Это означает, что хорошо известное свойство ветра налетать порывами отражено — и даже более последовательным образом — и в меньших масштабах.

Этот феномен, получивший название перемежаемость, был впервые исследован в работе [19], с. 253. См. также [18] (раздел 8.3), [433] и [434]. Особенно ярко выражена перемежаемость при очень больших числах Рейнольдса, т. е. когда внешний порог турбулентности достаточно велик по отношению к ее внутреннему порогу (например, на звездах, в океанах и в атмосфере).

Области, в которых сосредоточивается рассеяние, весьма удобно называются несущими или опорными.

Тот факт, что мы сводим в этом эссе вместе перемежаемость турбулентности и распределение галактик, совершенно естествен и даже не нов. Некоторое время назад физики (например, [579]) предприняли попытку объяснить происхождение галактик с помощью турбулентности. Понимая, что гомогенная турбулентность не сможет объяснить звездной перемежаемости, фон Вайцзекер набросал несколько поправок в духе модели Фурнье (или Шарлье, см. главу 9), а, значит, и в духе представляемой здесь теории. Если бы сегодня кто-нибудь занялся подобной объединяющей деятельностью, он вполне смог бы установить физическую связь между двумя типами перемежаемости и определить соответствующие самоподобные фракталы.

Одной из целей такого объединения может быть соотнесение размерности распределения галактик (D~1,23, как нам известно) с размерностью, характеризующей турбулентность (где-то в районе 2,5-2,7).

ОПРЕДЕЛЕНИЕ ТУРБУЛЕНТНОСТИ

Как мы заметили, один и тот же термин «турбулентность» применяется, как ни странно, для обозначения нескольких различных феноменов. Возможно, факт отсутствия четкого определения станет более понятным, если допустить — а я не просто допускаю, я заявляю, что так оно и есть, и намерен это доказать, — что подобающее определение турбулентности требует участия фракталов.

При слове «турбулентность» перед нашим мысленным взором появляется картинка, которая не меняется вот уже почти сто лет, с тех самых пор как Рейнольде впервые описал этот феномен по отношению к потоку жидкости в трубе: когда давление впереди потока мало, движение регулярно и «ламинарно», как только давление возрастает до определенной величины, вся регулярность неожиданно куда-то пропадает. В этом классическом примере носителя турбулентного рассеяния либо нет вообще, «пустое множество», либо им является вся труба целиком. И в том, и в другом случае отсутствуют не только достойные изучения геометрические особенности, но и сколько-нибудь веская причина для определения турбулентности.

С кильватерными струями все не так просто. Здесь существует граница между зоной турбулентности и окружающей ее водой, и геометрические особенности этой границы уже стоит изучить. Однако граница эта снова столь четко выражена, что не возникает насущной необходимости в отыскании «объективного» критерия для определения турбулентности.

Полностью установившаяся турбулентность в аэродинамической трубе также не представляет особых сложностей для исследователя, поскольку, как и в трубе Рейнольдса, зона турбулентности, по всей видимости, охватывает весь доступный объем. Тем не менее, используемые для достижения этого эффекта процедуры иногда весьма любопытны, если верить кое-каким упорно циркулирующим слухам. Говорят, что когда аэродинамическая труба только что запущена, она совершенно не годится для изучения турбулентности. Турбулентность не только не желает заполнять весь доступный ей объем, она и сама выглядит «турбулентной», проявляясь в нерегулярных и неконтролируемых порывах. Только после долгих трудов удается стабилизировать всю систему, превратив ее в некое подобие трубы Рейнольдса. Благодаря этому факту я числю себя среди тех, кому интересно, в какой степени неперемежающаяся «лабораторная турбулентность» в аэродинамических трубах может считаться тем же физическим явлением, что и перемежающаяся «естественная турбулентность» в атмосфере. Вывод: необходимо определиться с терминами.

К решению этой задачи мы подойдем кружным путем, начав с нечетко определенной концепции турбулентности и рассмотрев одномерные данные о скорости в точке. Приблизительный анализ таких данных может быть проиллюстрирован движениями центра тяжести большого самолета. Всякое отклонение самолета от своего пути указывает на наличие в атмосфере определенных областей с сильным рассеянием. Маленький самолет может послужить более чувствительным индикатором: он «чувствует» такие турбулентные потоки, которые никак не влияют на движение большого самолета, а каждый удар, претерпеваемый большим самолетом, воспринимается маленьким как целая серия более слабых ударов. Таким образом, если тщательно рассмотреть область сильного рассеяния в поперечном сечении, то станут ясно видны ламинарные включения, а при увеличении разрешающей способности анализа станут доступны и более мелкие включения.

Каждый этап требует переопределения того, что есть турбулентность. Понятие турбулентного интервала данных приобретает смысл, если понимать его как «интервал данных, который нельзя охарактеризовать полным отсутствием турбулентности». С другой стороны, более строгое понятие целиком турбулентного интервала данных представляется лишенным видимого смысла. По мере прохождения последовательных этапов анализа мы получаем все более ярко выраженную турбулентность на протяжении все меньшей доли от всего интервала данных. Объем носителя рассеяния, судя по всему, сокращается. Нашей следующей задачей будет построение модели этого носителя.

РОЛЬ САМОПОДОБНЫХ ФРАКТАЛОВ

Как я уже говорил, меня не удивляет тот факт, что на сегодняшний день по-настоящему исследованы очень немногие геометрические аспекты турбулентности, так как ученые имели в своем распоряжении только евклидовы методы. Чтобы избежать накладываемых ими ограничений, многие использовали в своих описаниях доевклидову терминологию. Например, в трудах по перемежаемости наблюдается необычно частое употребление таких «терминов», как пятнистый и комковатый, а Бэтчелор и Таунсенд [19] полагают, что «существует четыре возможных категории фигур: пузыри, пруты, бруски и ленты». Некоторые лекторы используют также (правда, чаще в устной речи) такие термины, как фасоль, спагетти и салат — образная терминология, не скрывающая мощи стоящей за ней геометрии.

Что касается тех исследований, которые я вел с 1964 г. и впервые представил на Киотском симпозиуме 1966 г. (см. [353]), то они усовершенствуют классический геометрический инструментарий добавлением в него самоподобных фракталов.

Отстаивать использование фракталов — шаг довольно новый и радикальный, однако обязать фракталы турбулентности быть самоподобными вполне укладывается в ортодоксальные рамки, поскольку само понятие самоподобия было впервые введено в обиход для описания турбулентности. Пионером в этой области выступил Льюис Фрай Ричардсон, с которым мы познакомились в главе 5. В 1926 г. [491] Ричардсон ввел концепцию иерархии вихрей, связанных каскадным процессом. (См. также главу 40.)

Кроме того, именно в контексте турбулентности теория каскадов и самоподобия достигла своих прогнозистских триумфов в период между 1941 и 1948 гг. Главными действующими лицами здесь были Колмогоров, Обухов, Онсагер и фон Вайцзекер, однако традиция связывает достижения этого периода только с именем Колмогорова. Как бы то ни было, где-то между Ричардсоном и Колмогоровым в теории турбулентности произошел некоторый почти незаметный сдвиг.

Если концепция самоподобия вытекает из рассмотрения доступных визуальному восприятию вихрей, то теория Колмогорова уже является чисто аналитической. Фракталы же позволяют применить методы самоподобия к геометрии турбулентности.

Фрактальный подход следует сопоставить с тем своеобразным фактом, что пузыри, пруты, бруски и ленты, составлявшие вчерашние варианты выбора, не самоподобны. Это, очевидно, и послужило причиной появления высказываний в том смысле, что выбор «примитивен» и что необходимы какие-то промежуточные варианты (см., например, [282]).

В голову приходят некоторые возможные произвольные изменения в стандартных формах специально для данного случая. Например, можно расщепить пруты на шнуры, окруженные свободно болтающимися прядями (вспомните аналогичную ситуацию с кильватерными или реактивными струями), и нарезать из брусков тонкие листы с отделяющимися слоями. Можно даже как-нибудь добиться самоподобия этих прядей и слоев.

Однако такое искусственное введение самоподобия никем до сих пор не было предпринято, и я, со своей стороны, считаю это занятие как неперспективным, так и малоприятным. Я предпочитаю следовать совершенно другим путем, предоставляя самому процессу генерировать и общие формы областей, и подробности структуры прядей и слоев. Поскольку в элементарных самоподобных фракталах отсутствует понятие привилегированного направления, мы не будем затрагивать (пока) все те интересные геометрические задачи, которые возникают при комбинации турбулентности и интенсивного движения всей системы.

< Обухов [454] и Колмогоров [277] представили в 1962 г. первые аналитические исследования перемежаемости. По своему непосредственному воздействию эти работы почти догнали работы тех же авторов 1941 г. [453, 276], однако в них имеются серьезные ошибки, и вряд ли можно говорить о сколько-нибудь значительной долгосрочной научной ценности этих работ. См. [367, 378, 387] и [280]. ►

ВНУТРЕННИЙ И ВНЕШНИЙ ПОРОГИ

Благодаря вязкости, внутренний порог турбулентности положителен. А кильватерные и реактивные струи и прочие подобные потоки явно демонстрируют конечный внешний порог Ω. Сейчас, однако, очень многие полагают, что в конечности Ω следует усомниться. Ричардсон [491] заявляет, что «согласно результатам наблюдений, численные значения [предполагается, что они должны сходиться для образцов с размерами, близкими к Ω] зависят исключительно от того, насколько велика протяженность объема, учитываемого при вычислении. Исследования Дефан- та показывают, что в атмосфере предела достичь невозможно». Метеорологи сначала проигнорировали это заявление (слишком поспешное, на мой взгляд), потом просто забыли о нем. Новые данные, приведенные в главе 11, и исследование лакунарности в главе 34 только подтверждают мое убеждение в том, что вопрос пока еще не закрыт.

СТВОРАЖИВАНИЕ И ФРАКТАЛЬНО ГОМОГЕННАЯ ТУРБУЛЕНТНОСТЬ

На предварительном этапе мы можем приблизительно представить несущее множество турбулентности в виде одного из самоподобных фракталов, полученных в предыдущих главах с помощью створаживания. Это створаживание является грубой «дерандомизированной» формой модели Новикова-Стюарта в главе 23. После конечного числа m этапов створаживающего каскада рассеяние однородно распределяется по N=r−mD из r−3m неперекрывающихся субвихрей n-го порядка, положения которых определяются генератором. Продолжив каскад до бесконечности, мы получаем предельное однородное распределение рассеяния на фрактале размерности D<3. Я думаю, этот предел можно назвать фрактально гомогенной турбулентностью.

Гомогенная турбулентность по Дж.И.Тейлору получается при D→3. Самым выдающимся результатом такого подхода является то, что створаживание не исключает размерности D=3, однако допускает и новую возможность: D<3.

ПРЯМОЕ ЭКСПЕРИМЕНТАЛЬНОЕ ПОДТВЕРЖДЕНИЕ ТОМУ, ЧТО РАЗМЕРНОСТЬ НОСИТЕЛЯ ПЕРЕМЕЖАЕМОСТИ УДОВЛЕТВОРЯЕТ НЕРАВЕНСТВУ D>2

С точки зрения линейных сечений широкие классы неограниченных фракталов ведут себя достаточно просто: сечение почти наверняка пусто при D<2 и с положительной вероятностью непусто при D>2. (В главе 23 доказывается этот вывод для класса простых фракталов.)

Если бы множество-носитель турбулентного рассеяния удовлетворяло неравенству D<2, то из предыдущего заявления вытекало бы, что практически ни один из экспериментальных замеров не попадет в зоны турбулентности. Так как этого не происходит, можно предположить, что в реальности D>2. Это заключение обладает необычайной силой, поскольку оно опирается на многократно воспроизведенный эксперимент, возможные результаты которого сводятся к альтернативе между «часто» и «никогда».

Предварительный топологический аналог DT>2 (см. [387]) выглядит весьма многообещающе, однако слишком специально для того, чтобы подробно рассматривать его на этих страницах.

ГАЛАКТИКИ И ТУРБУЛЕНТНОСТЬ. СРАВНЕНИЕ

Неравенство D>2 для множества-носителя турбулентного рассеяния и обратное неравенство D<2 для распределения массы в космосе (см. главу 9) происходят из тесно связанных между собой разных знаков величины D−2 на типичном сечении фрактала и на его типичной проекции на плоскость (или на небесный свод). Для рассматриваемого в настоящей главе феномена такое сечение должно быть непустым. В главе 9, напротив, было показано, что эффект пылающего неба «отменяется», если большая часть проведенных от Земли прямых линий так никогда и не встречается ни с одной звездой. Это означает, что проекция всех звезд на земной небосвод должна иметь исчезающе малую площадь.

Различие между знаками при D−2 в двух упомянутых проблемах должно иметь самое непосредственное отношение к различию между их структурами.

(НЕ)РАВЕНСТВО ПОКАЗАТЕЛЕЙ [353, 387]

Множество полезных характеристик фрактально гомогенной турбулентности зависит исключительно от D. Эта тема рассмотрена в [387], где перемежающаяся турбулентность характеризуется с помощью ряда концептуально различных показателей, связанных некоторыми (не)равенствами. < Аналогичным образом обстоит дело с явлениями, происходящими в критической точке. ►

Спектральные (не)равенства. В [353] (где я, кстати, использовал обозначение θ=D−2) было впервые получено некое (не)равенство; обычно оно выражается через спектр скорости турбулентности, однако здесь мы запишем его в вариационной форме. Внутри фрактально гомогенной турбулентности скорость v в точке x удовлетворяет следующему выражению:

<|v(x)−v(x+r)|2>=|r|2/3+B,

где B=(3−D)/3.

В случае гомогенной турбулентности Тейлора D=3, а значит, B обращается в нуль, после чего остается классический показатель Колмогорова 2/3, с которым мы встретимся снова в главе 30.

В [387] также показано, что в более общей модели взвешенного створаживания, описанной в [378], B≤(3−D)/3.

β-модель. Авторы работы [157] ухитрились нарастить на фрактально гомогенную турбулентность (как она описана в [387]) псевдодинамическую терминологию. Их интерпретация оказалась весьма удобной, хотя математические рассуждения и выводы идентичны моим. Термин «β-модель», которым окрестили эту интерпретацию, даже приобрел некую популярность, и теперь его нередко идентифицируют с фрактальной гомогенностью.

ТОПОЛОГИЯ ТУРБУЛЕНТНОСТИ: ВОПРОС ВСЕ ЕЩЕ ОТКРЫТ

В предыдущих главах мы встретили с избытком свидетельств тому, что одно и то же значение D может характеризовать множества, весьма отличающиеся с точки зрения топологической связности. Топологическая размерность DT ставит нижнюю границу для фрактальной размерности D, однако граница эта очень часто нарушается, причем величины этих нарушений столь велики, что сама граница теряет всякий смысл. Фигура с фрактальной размерностью в интервале от 2 до 3 может выглядеть и как «лист», и как «линия», и как «пыль», а разнообразие конкретных конфигураций настолько велико, что становится очень сложно подобрать или даже придумать новые названия для них. Например, фрактальные фигуры, в общем и целом напоминающие веревку, могут вырастить настолько плотные «пряди», что в результате получится нечто «большее», чем веревка. Аналогичным образом, фрактальные почти-листы оказываются чем-то большим, чем листы. Возможно также произвольно смешивать их «листовые» и «веревочные» признаки. На интуитивном уровне можно было бы понадеяться на то, что должна существовать некая более тесная связь между фрактальной размерностью и степенью связности, однако эту надежду математики потеряли где-то между 1875 и 1925 гг. Мы обратимся к одной специальной проблеме такого рода в главе 23, но уже сейчас можно сказать, что действительная природа весьма нечеткой связи между этими структурами представляет собой по существу неизведанную территорию.

Вопрос о ветвлении, поднимаемый в главе 14, также очень важен, но его воздействие на исследования турбулентности на настоящий момент пока не выяснено.

Неравенства эксцесса. Рассмотрение проблемы связности в [88], [565] и [507] основано на использовании меры перемежаемости, называемой эксцессом. Со стороны может показаться, что эти модели имеют дело с фигурами, которые сочетают в себе топологические размерности плоскости (листы) и прямой (пруты). В действительности же топология здесь рассматривается опосредованно, через показатель предсказанного степенного отношения между эксцессом и числом Рейнольдса. К сожалению, такой подход не срабатывает, так как на показатель эксцесса влияют различные добавочные допущения, и, в конечном счете, он зависит исключительно от фрактальной размерности D фигуры, генерируемой моделью. В [88] предполагается, что значение D равно топологической размерности, которая постулируется там же, DT=2. Предположение неверно, оно лишь отражает тот факт, что данные фрактальны, а сама модель — нет. В статье [565] постулируется DT=1, но D при этом принимает дробное значение 2,6, т. е. эта модель включает в себя некий приближенный фрактал. И все же, предпринятая попытка вывести из эксцесса комбинацию интуитивной «фигурной» и топологической размерностей лишена каких бы то ни было оснований.

11 ФРАКТАЛЬНЫЕ ОСОБЕННОСТИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Эта глава посвящена первому пересечению фрактальной геометрии Природы с основным направлением математической физики. Тема эта представляется мне настолько важной, что заслуживает отдельной главы. Читатели, интересы которых лежат в других областях, могут эту главу спокойно пропустить и двигаться дальше.


РАСКОЛ В ТЕОРИИ ТУРБУЛЕНТНОСТИ

Основным недостатком текущего состояния теоретических исследований турбулентности является то, что они разделены, как минимум, на две не связанные друг с другом области. В одной царит предложенная Колмогоровым в 1941 г. (см. [276]) весьма успешная феноменология (о которой мы подробно поговорим в главе 30). Вторая имеет дело с дифференциальными уравнениями гидродинамики, выведенными для невязких жидкостей Эйлером, а для вязких — Навье (и Стоксом). Эти области никак не соотносятся между собой. Если «объяснить» и «понять» означает «свести к фундаментальным уравнениям», то теория Колмогорова еще не объяснена и не понята. Решать уравнения о движении жидкости она также не помогает.

На первый взгляд может показаться, будто сделанное мною в предыдущей главе утверждение о том, что турбулентное рассеяние является гомогенным не на всем пространстве, а лишь на некотором фрактальном подмножестве, только углубляет пропасть между областями. Но я заявлял и заявляю: это не так. И у меня есть свидетельства в свою защиту.

ВАЖНОСТЬ ОСОБЕННОСТЕЙ

Припомним процедуру, которая позволяет успешно решать уравнения математической физики. Обычно сначала составляется список, который объединяет результаты, полученные решением уравнения при особых условиях, с результатами, предположенными на основании физических наблюдений. Далее, опуская связанные с этими решениями детали, мы составляем список элементарных «особенностей», характерных для рассматриваемой задачи. Начиная с этого этапа, часто бывает возможно решать более сложные варианты уравнения в первом приближении посредством идентификации подходящих особенностей и связывания их в требуемую последовательность. Именно так студент-аналитик строит график рациональной функции. Разумеется, стандартные особенности — это стандартные евклидовы множества, т. е. точки, кривые и поверхности.

ПРЕДПОЛОЖЕНИЕ: ОСОБЕННОСТИ ДВИЖЕНИЯ ЖИДКОСТИ - ЭТО ФРАКТАЛЬНЫЕ МНОЖЕСТВА [386]

Рассматривая в таком свете сложности, возникающие при описании турбулентности с помощью решений Эйлера и Навье-Стокса, я склонен счесть их следствием того факта, что не существует стандартной особенности, которая объясняла бы воспринимаемые нами на интуитивном уровне характеристические признаки турбулентности.

Исходя из этого, я заявляю [386], что турбулентные решения фундаментальных уравнений включают в себя особенности или «почти особенности» совершенно иного рода. Эти особенности представляют собой локально масштабно-инвариантные фрактальные множества, а почти особенности — приближения к ним.

Самым простым основанием для данного утверждения можно считать такое соображение: раз уж стандартные множества оказались неспособны адекватно описать феномен, ничто не мешает попробовать следующие по изученности множества. Существуют, однако, и более конкретные основания.

НЕВЯЗКИЕ ЖИДКОСТИ (СЛУЧАЙ ЭЙЛЕРА)

Первое конкретное предположение. В моем вышеизложенном утверждении говорится, в частности, и о том, что особенности решений уравнений Эйлера представляют собой фрактальные множества.

Основания. Эта вера зиждется на одном очень старом правиле: симметрии и другие инвариантности, представленные в уравнении, «должны» быть отражены и в решении уравнения. (Самодостаточное, тщательное и красноречивое описание можно найти в четвертой главе книги Биркгофа «Гидродинамика» [37].) Безусловно, сохранение симметрии ни в малейшей степени не является всеобщим законом Природы, следовательно, здесь нельзя исключать и возможности «нарушения симметрии». Однако давайте предположим, что симметрия сохраняется, и посмотрим, что получится. Поскольку уравнения Эйлера независимы от масштаба, их типичные решения также должны быть независимы от масштаба, причем это условие должно соблюдаться и для любых особенностей, которыми они могут обладать. А так как безуспешность всех предшествующих попыток мы принимаем как свидетельство того, что эти особенности не являются стандартными точками, линиями или поверхностями, они должны быть фракталами.

Может, конечно же, случиться так, что форма границы и начальные скорости окажутся ограничены неким масштабом. Здесь, однако, следует учитывать еще одну возможность — локальное поведение решений может определяться «принципом отсутствия ощущения границы». В этом случае решения должны быть локально безмасштабны.

Исследования Александра Чорина. В 1981 г. Чорин [80] применил к анализу диапазона инерции в полностью установившейся турбулентности метод вихрей, чем весьма серьезно укрепил мои позиции. Чорин установил, что сильно растянутая завихренность собирается в тело уменьшающегося объема, размерность которого D~2,5 вполне согласуется с выводами, сделанными в главе 10. Поправка к колмого- ровским показателям, B=0,17±0,03, также согласуется с экспериментальными данными. Из расчетов следует, что решения уравнений Эйлера в трех измерениях становятся несправедливыми при конечном значении времени.

В своей следующей, неопубликованной, работе Чорин подходит еще ближе к экспериментальному значению: 2,5<D<2,6.

ВЯЗКИЕ ЖИДКОСТИ (СЛУЧАЙ НАВЬЕ-СТОКСА)

Второе конкретное предположение. Далее я утверждаю, что особенности решений уравнений Навье-Стокса могут быть только фракталами.

Неравенство размерности. На интуитивном уровне мы чувствуем, что решения уравнений Навье-Стокса должны непременно быть более гладкими, а значит — менее особыми, нежели решения уравнений Эйлера. Отсюда возникает следующее предположение: размерность особенностей в случае Эйлера превышает таковую в случае Навье-Стокса. Переход к нулевой вязкости можно, вне всякого сомнения, считать особенностью.

Почти особенности. Заключительное предположение моего общего утверждения касается пиков рассеяния, входящих в понятие перемежаемости: они представляют собой особенности Эйлера, сглаженные вязкостью.

Исследования В. Шеффера. Рассмотрение моих предположений для случая вязких жидкостей было впервые предпринято В. Шеффе- ром; некоторое время назад к нему присоединились и другие исследователи, желающие взглянуть в новом свете на поведение конечного или бесконечного объема жидкости, подчиняющегося уравнениям Навье-Стокса и обладающего в момент времени t=0 конечной кинетической энергией.

Шеффер [510] исходит из допущения, что особенности действительно имеют место, и показывает, что они непременно удовлетворяют следующим теоремам. Во-первых, фрактальная размерность их проекции на временную ось не превышает 1/2. Во-вторых, их проекция на пространственные координаты представляет собой в лучшем случае фрактал с размерностью 1.

Впоследствии обнаружилось, что первый из вышеприведенных результатов является следствием одного замечания в старой и довольно известной работе Лере [301], которая внезапно обрывается после получения формального неравенства, из которого как раз и следует первая теорема Шеффера. Хотя вряд ли ее можно назвать следствием — скорее, просто новая формулировка. Однако подобает ли нам относиться к этому свысока? Перенос чужих выводов в терминологически более изящную форму редко (и небезосновательно) расценивается как научное достижение, однако мне кажется, что для данного случая следует сделать исключение. Упомянутое неравенство из теоремы Лере было с практической точки зрения почти бесполезным, пока следствие Мандельброта-Шеффера не представило его миру в должной перспективе.

Все случаи применения размерности Хаусдорфа-Безиковича (во многом, кстати, шаблонные) в последних работах по уравнениям Навье-Стокса могут быть непосредственно выведены из моих предположений.

ОСОБЕННОСТИ ДРУГИХ ФИЗИЧЕСКИХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Другие явления, которые, как мне представляется, следует описывать с помощью масштабно-инвариантных фракталов, не имеют ничего общего ни с Эйлером, ни с Навье и Стоксом. Например, распределение галактик определяется уравнениями гравитации. Однако аргумент о сохранении симметрии применим ко всем масштабно-инвариантным уравнениям. В сущности, довольно туманное замечание Лапласа (см. раздел МАСШТАБНАЯ ИНВАРИАНТНОСТЬ ПО ЛЕЙБНИЦУ И ЛАПЛАСУ, глава 41) можно теперь (задним числом!) истолковать так, будто оно намекает на тему главы 9.

В более общем смысле, фрактальный характер особенностей можно, скорее всего, проследить в неких обобщенных признаках, общих для самых различных уравнений математической физики. Может, это просто какой-то очень широкий род нелинейности? Мы еще вернемся к этому вопросу в главе 20 — правда, в несколько иной терминологии.

IV МАСШТАБНО-ИНВАРИАНТНЫЕ ФРАКТАЛЫ

12 СООТНОШЕНИЯ МЕЖДУ ДЛИНОЙ, ПЛОЩАДЬЮ И ОБЪЕМОМ

В главах 12 и 13 мы подробно рассмотрим свойства фрактальной размерности на примере многочисленных «мини-прецедентов» различной важности и возрастающей сложности, а в главе 14 покажем, что фрактальная геометрия непременно включает в себя различные концепции за пределами фрактальной размерности.


В настоящей главе мы опишем и применим к различным конкретным случаям фрактальные аналоги, которые я разработал специально для определенных стандартных выводов евклидовой геометрии. Их можно рассматривать как параллельные фрактальным отношениям вида M(R)∝RD, полученным в главах 6, 8 и 9.

СТАНДАРТНЫЙ АНАЛИЗ РАЗМЕРНОСТЕЙ

Из того, что длина окружности радиуса R равна 2πR, а площадь диска, ограниченного этой окружностью, составляет πR2, следует, что

(длина)=2π1/2(площадь)1/2.

Соответствующее соотношение для квадрата имеет вид

(длина)=4(площадь)1/2.

Вообще в любом семействе плоских фигур, геометрически подобных, но имеющих различные линейные размеры, отношение (длина)/(площадь)1/2 представляет собой число, полностью определяемое общей для семейства формой.

Пространство (E=3) предоставляет нам новые альтернативные способы оценки линейной протяженности фигуры с помощью (длины), (площади)1/2 и (объема)1/3, причем отношение между любыми двумя из этих трех величин является параметром фигуры, независимым от единиц измерения.

Эквивалентность различных линейных протяженностей во многих случаях оказывается очень полезной. А ее расширение (включающее время и массу) лежит в основе мощной методики, известной физикам как «анализ размерностей». (Желающим подробнее ознакомиться с основными его особенностями рекомендую прочесть [37].)

ПАРАДОКСАЛЬНЫЕ РАЗМЕРНОСТИ

Однако нам известно множество примеров (и их количество неуклонно растет), демонстрирующих, к нашему вящему разочарованию, полное отсутствие эквивалентности между альтернативными линейными протяженностями. Например, мозг млекопитающего характеризуется соотношением

(объем)1/3∝(площадь)1/D,

где D~3 значительно больше ожидаемого значения 2. Измерения длины главной реки бассейна (см. [186]) показывают, что

(площадь)1/2∝(длина)1/D,

где D определенно больше ожидаемого значения 1. В ранних исследованиях этот последний результат объяснялся тем, что речные бассейны не самоподобны — большие бассейны имеют вытянутую форму, а маленькие несколько сплюснуты. К сожалению, такая интерпретация не согласуется с экспериментальными данными.

Ниже приведено мое объяснение этих и других похожих наблюдений с более убедительных позиций, и моим инструментом будет новое-фрактальное-соотношение между длиной, площадью и объемом.

ФРАКТАЛЬНОЕ СООТНОШЕНИЕ МЕЖДУ ДЛИНОЙ И ПЛОЩАДЬЮ

Для большей наглядности рассмотрим совокупность геометрически подобных островов с фрактальными береговыми линиями размерности D>1. Стандартное отношение (длина)/(площадь)1/2 в этом контексте стремится к бесконечности, но я намерен показать, что оно имеет достойный фрактальный аналог, вполне пригодный для каких угодно практических целей. Определим длину побережья, измеренную с шагом длины G, как (G-длину), а площадь острова, измеренную в единицах G2 — как (G-площадь). Учитывая, что зависимость (G-длины) от G нестандартна, в отличие от стандартной зависимости (G-площади) от G, мы можем записать следующее обобщенное отношение:

(G−длина)1/D/(G−площадь)1/2.

Я утверждаю, что значение этого отношения одинаково для любого из наших самоподобных островов.

В результате мы имеем два различных способа оценки линейной протяженности каждого острова в единицах G: стандартное выражение (G−площадь)1/2 и нестандартное (G−длина)1/D.

Характерная особенность данного подхода заключается в том, что при смене длины шага с G на G' мы получим другое отношение альтернативных линейных протяженностей:

(G'−длина)1/D/(G'−площадь)1/2,

которое отличается от исходного на коэффициент (G'/G)1/D−1.

Что касается отношения линейных протяженностей, то для каждого семейства взаимно подобных фигур оно имеет свое значение, независимо от того, фрактальные это фигуры или стандартные. Следовательно, это отношение представляет в количественном виде лишь один аспект формы фигуры.

Заметим, что полученное соотношение между длиной и площадью можно применять для оценки размерности фрактальной кривой, ограничивающей стандартную область.

Доказательство соотношения. Первым делом измерим длину каждой береговой линии с помощью внутренней, зависящей от площади, мерки:

G*=(G−площадь)1/2/1000.

Если аппроксимировать каждое из побережий наших островов многоугольником с длиной стороны G*, эти многоугольники также будут взаимно подобны, а их периметры будут пропорциональны стандартным линейным протяженностям (G−площадь)1/2.

Заменим теперь G* заданным шагом G'. Из главы 6 нам известно, что измеренная длина при этом изменится в отношении (G/G*)1−D. Следовательно:

Наконец, возведя каждую часть в степень 1/D, получаем искомое соотношение.

НАСКОЛЬКО ИЗВИЛИСТА РЕКА МИССУРИ?

Вышеизложенные соображения проливают свет и на измерение длины рек. Чтобы определить длину главной реки речного бассейна, мы аппроксимируем форму русла извилистой самоподобной кривой размерности D>1, которая начинается в точке, называемой истоком, и заканчивается в точке, называемой устьем. Если бы все реки, равно как и их бассейны, были взаимно подобны, то, согласно фрактальному соотношению между длиной и площадью, мы получили бы следующее соотношение:

(G−длина реки)1/D∝(G−площадь бассейна)1/2.

Более того, исходя из стандартности площади:

(G−площадь бассейна)1/2∝(расстояние до прямой от истока до устья).

Объединив эти соотношения, заключаем, что

(G−длина реки)1/D∝(расстояние до прямой от истока до устья).

В высшей степени замечательно, что в уже упоминавшейся работе Хака [186] на основании эмпирических данных показано, что отношение

(G−длина реки)/(G−площадь бассейна)0,6

и в самом деле одинаково для всех рек. Из косвенной оценки D/2=0,6 получаем D=1,2 — значение, весьма напоминающее те, что дают измерения длины береговых линий. Если с помощью D измерять степень иррегулярности, то значения для локальных излучин окажутся абсолютно идентичными значениям для поворотов в масштабе всей реки!

С другой стороны, согласно наблюдениям Дж. Э. Мюллера, значение D для бассейнов с площадью более 104км2 и рек соответствующих размеров уменьшается до 1. Исходя из наличия двух различных значений D, можно предположить, что если отобразить бассейны всех рек на листах бумаги одинакового размера, то карты бассейнов малых и больших рек будут выглядеть приблизительно одинаково, в то время как карты бассейнов очень длинных рек будут почти прямолинейными. Может оказаться, что нестандартное самоподобие нарушается вблизи внешнего порога Ω, величина которого составляет порядка 100 км.

Суммарная длина речного дерева. На основании вышеизложенных соображений можно также предположить, что суммарная длина всех рек в бассейне должна быть пропорциональна площади бассейна. Мне говорили, что это предположение верно, однако конкретных ссылок у меня нет.

Назад к геометрии. Для рек и водоразделов, родственных кривой «прохождения снежинки» (см. рис. 104 и 105), D~1,2618, что несколько больше наблюдаемого значения. Соответствующие размерности на рис. 106 и 107 составляют D~1,1291 — недолет.

Кривые Пеано на рис. 95 и 98 и вовсе попадают пальцем в небо, так как D=1.

Заметим, что равенство размерностей рек и водоразделов является не логической необходимостью, а всего лишь характерной особенностью некоторых конкретных рекурсивных моделей. Возьмем, например, речную сеть, объединенную стреловидной кривой (см. рис. 205) и описанную в [381]. Реки здесь имеют размерность D=1, а водоразделы — D~1,5849.

ГЕОМЕТРИЯ ДОЖДЯ И ОБЛАКОВ

На с. 13, 25 и 146 упоминается о возможности использования фракталов для моделирования облаков. Эта возможность теперь получила подтверждение в работе Лавджоя [319], который построил график зависимости фрактального периметра облаков и дождевых областей от их фрактальной же площади (см. рис. 169). Не много существует метеорологических графиков, которые учитывали бы все доступные данные в столь обширном диапазоне размеров, и были бы при этом хоть приблизительно такими же прямолинейными.

График построен на основании данных радиолокационных наблюдений зон дождей над тропической Атлантикой (скорость выпадения осадков свыше 0,2 мм/час) и данных наблюдений в инфракрасном диапазоне с геостационарного спутника зон облаков над Индийским океаном (т.е. зон с максимальной температурой облаков не выше — 10°С). Площади зон варьируются от 1км2 до 1000000км2. Размерность периметра, пригодного, по меньшей мере, для шести порядков величины, составляет 4/3. Удовольствие предоставить физическое объяснение наблюдаемому феномену я уступаю доктору Лавджою.

Самое большое облако простиралось от центральной Африки до южной Индии — а ведь это расстояние далеко превосходит толщину атмосферы, с которой очень часто (слишком часто, на мой взгляд) связывают внешний порог L атмосферной турбулентности. Заявление Ричардсона (см. с. 152) может еще оказаться пророческим.

СООТНОШЕНИЕ МЕЖДУ ПЛОЩАДЬЮ И ОБЪЕМОМ. КОНДЕНСАЦИЯ МИКРОКАПЕЛЬ

Рассуждение, с помощью которого мы получили соотношение между длиной и площадью, легко обобщается для случая пространственных областей, ограниченных фрактальными поверхностями, приводя к следующему соотношению:

(G−площадь)1/D∝(G−объем)1/3.

Чтобы проиллюстрировать это соотношение, рассмотрим конденсацию пара в жидкость. Это физическое явление знакомо всем, однако его теоретическое описание появилось совсем недавно. Согласно Фишеру [151], нижеследующая геометрическая картинка была предложена (по всей видимости, совершенно независимо друг от друга) Я. Френкелем, В. Бандом и А. Бийлом в конце 30-х гг. Газ состоит из отдельных молекул, достаточно удаленных друг от друга, за исключением случайных скоплений, где молекулы более-менее тесно связаны между собой силами притяжения. Скопления различных размеров находятся во взаимном статистическом равновесии, ассоциируя и вновь диссоциируя, однако шансов на то, что появится настолько огромное скопление, что его можно будет счесть «каплей» жидкости, чрезвычайно мало. Площадь поверхности больших скоплений (тех, что не слишком «размазаны» в пространстве на манер, скажем, скоплений водорослей) достаточно хорошо определена. Поверхность скопления придает ему устойчивость. Если теперь понизить температуру, то скоплениям станет выгодно соединяться в капли, а каплям — сливаться вместе, минимизируя тем самым общую площадь поверхности и, как следствие, общую энергию. При благоприятных условиях капли быстро растут. Появление капли макроскопических размеров означает начало конденсации.

Отталкиваясь от этой картины, Фишер предположил, что площадь и объем конденсирующейся капли связаны формулой, эквивалентной соотношению (площадь)1/D=(объем)1/3. Фишер оценивает величину D аналитически, не задумываясь о ее геометрическом смысле, мы же с неизбежностью должны признать, что поверхности капель представляют собой фракталы размерности D.

МОЗГОВЫЕ ИЗВИЛИНЫ МЛЕКОПИТАЮЩИХ

Чтобы проиллюстрировать соотношение между площадью и объемом в важном предельном случае D=3 и в то же время довершить изгнание дьявола из кривых Пеано, представленных в главе 7, рассмотрим одну широко известную проблему из сравнительной анатомии в терминах почти заполняющих пространство поверхностей.

Объем головного мозга млекопитающих колеблется от 0,3 до 3000 мл, причем у мелких животных его кора выглядит относительно или совершенно гладкой, тогда как у крупных животных она покрыта видимыми складками, независимо от положения животного на эволюционной лестнице. Зоологи утверждают, что отношение количества белого вещества (образованного нейронными аксонами) к количеству серого вещества (где находятся окончания нейронов) приблизительно одинаково у всех млекопитающих, и для того, чтобы поддерживать это отношение, кора большого мозга неизбежно собирается в складки. Знание того, что степень складчатости обусловлена чисто геометрическими причинами, освобождает человека от страха перед интеллектуальным превосходством дельфинов или китов — они, конечно, больше, однако вовсе не обязательно более высокоразвиты.

Количественная характеристика такой складчатости не под силу стандартной геометрии, но прекрасно вписывается в рамки геометрии фрактальной. Объем серого вещества приблизительно равен произведению его толщины на площадь внешней оболочки мозга, называемой на латыни pia. Если толщина ε одинакова для всех видов, то площадь оболочки будет пропорциональна не только объему серого вещества, но и объему белого вещества, а значит — полному объему мозга V. Следовательно, из соотношения между площадью и объемом получим D=3, а оболочка будет поверхностью, которая за вычетом толщины ε заполняет пространство.

Эмпирическое соотношение между площадью и объемом лучше описывается выражением A∝VD/3, где D/3 приблизительно находится в интервале от 0,91 до 0,93 (сведения получены из частной беседы с Джерисоном и основаны на экспериментальных данных Элиаса-Шварца, Бродмана и др.). Первое приходящее в голову объяснение заключается в том, что мозговая оболочка лишь частично заполняет пространство (2,73<D<2,79). В соответствующем разделе главы 17 вкратце изложены несколько более продвинутые соображения.

АЛЬВЕОЛЯРНЫЕ И КЛЕТОЧНЫЕ МЕМБРАНЫ

Найдется ли среди моих читателей биолог, который будет так любезен, что встанет и объявит всем окружающим, что предыдущий раздел не имеет никакой практической ценности и не открывает ничего нового? Я, со своей стороны, был бы чрезвычайно рад услышать такое заявление, поскольку оно лишь подкрепило бы некоторые мои рассуждения, помещенные в начале главы 7. Несмотря на то, что биолог предпочтет обойти за милю любую поверхность Пеано, устроенную для него математиками, я утверждаю, что лучшие теоретики от биологии хорошо знакомы с основной идеей таких поверхностей.

Таким образом, главная новость предыдущих разделов относится к поверхностям размерности D<3, введение которых (как мы убедились) необходимо для согласования теории с экспериментом. Рассмотрим возможность применения этих новых поверхностей в биологии, обсудив вкратце их полезность при выяснении подробной структуры некоторых живых мембран.

Начнем с краткого резюме раздела 4.3.7 труда Вайбеля «Стереологические методы» (см. [586]). Оценки общей площади поверхности альвеол человеческого легкого противоречивы: оптическая микроскопия дает 80м2, в то время как по данным электронной микроскопии площадь альвеол составляет 140м2. Существенно ли это расхождение? Ответственные за него мелкие детали не играют никакой роли в газообмене, будучи сглажены покрывающим их жидким слоем (в результате чего функциональная площадь альвеол еще более уменьшается), однако они весьма важны для обмена растворами. Из проведенных измерений (спровоцированных, кстати, моей статьей «Побережье Британии») можно в первом приближении заключить, что мембранная размерность D=2,17 в широком диапазоне масштабов.

Паумгартнер и Вайбель [464] рассмотрели субклеточные мембраны в клетках печени. В этом случае также возникает расхождение между различными оценками площади на единицу объема, и здесь оно также легко устранимо, стоит лишь нам постулировать D=2,09 для внешней митохондриальной мембраны (которая окружает клетку и по гладкости лишь немногим отличается от мембран с минимальным отношением площадь/объем). Для внутренних митохондриальных мембран D=2,53, а для эндоплазматической сети D=1,72.

Заметим еще, что носовая кость многих животных обладает чрезвычайно сложной структурой, в результате чего площадь покрывающей эту кость «мембраны» оказывается очень большой при сравнительном малом объеме. У оленей и песцов эта мембрана, возможно, служит для усиления обоняния, а вот у верблюдов аналогичная структура выполняет водосберегающую функцию [512].

КОМПЬЮТЕРНАЯ МОДУЛЯРНАЯ ГЕОМЕТРИЯ

Рассмотрим еще одну иллюстрацию соотношения между площадью и объемом, на этот раз в компьютерном аспекте. Компьютеры не являются естественными системами, но это не должно нас останавливать. Этот и некоторые другие прецеденты призваны продемонстрировать, что с помощью фрактальных методов можно, в конечном счете, описать любую естественную или искусственную «систему», состоящую из отдельных «элементов», самоподобно связанных между собой (кроме того, приоритетными в системе должны являться не свойства элементов, а правила их соединения).

Сложные компьютерные системы, как правило, разделены на многочисленные модули. Каждый состоит из некоторого большого числа C компонентов и связан со своим окружением некоторым большим числом T соединений. Оказывается, что T1/D∝C1/E с точностью до нескольких процентов. (Причина необычного написания показателей прояснится чуть ниже.) В корпорации IBM это правило приписывают Э. Ренту (см. также [288]).

Согласно предварительным данным, D/E=2/3; это же значение Р. У. Киз [264] экстраполирует на гигантские «схемы» нервной системы (оптический нерв и мозолистое тело). Однако с ростом эффективности системы отношение D/E увеличивается. Эффективность, в свою очередь, отражает степень параллелизма, заложенную в систему. В частности, конструкции с крайними показателями характеризуются крайними значениями D. В сдвиговом регистре модули выстроены в ряд и T всегда равно 2, независимо от C: следовательно, D=0. При интегральном параллелизме каждый компонент требует отдельного соединения, т. е. T=C, или D=E.

Объясняя значение D/E=2/3, Киз отмечает, что компоненты, как правило, размещены в пределах объема модуля, тогда как соединения проходят через их поверхности. Чтобы показать, что это наблюдение имеет самое непосредственное отношение к правилу Рента, достаточно допустить, что все компоненты имеют приблизительно одинаковые объем v и площадь поверхности σ. Так как C — это общий объем модуля, деленный на v, величина C1/3 будет приблизительно пропорциональна радиусу модуля. С другой стороны, T — это общая площадь поверхности модуля, деленная на σ, т. е. величина T1/2 также будет приблизительно пропорциональна радиусу модуля. Правило Рента всего лишь выражает эквивалентность двух различных мер радиуса в стандартной пространственной фигуре. E=3 — это евклидова размерность модуля, a D=2 — размерность стандартной поверхности.

Следует сказать, что понятие модуля весьма неоднозначно, его даже можно считать неопределенным, однако правилу Рента это ничуть не мешает, пока подмодули в модуле соединяются друг с другом поверхностями.

Так же легко интерпретируются и крайние случаи, упомянутые выше. В стандартной линейной структуре E=1, а граница между компонентами сводится к двум точкам; следовательно, D=0. В стандартной плоской структуре E=2, a D=1.

Однако когда отношение E/D не равно ни 3/2, ни 2/1, ни 1/0, стандартная евклидова геометрия не позволяет интерпретировать величину C как объем, а T — как площадь. Между тем, такие интерпретации имеют значительную практическую ценность — и не составляют никакой сложности для геометрии фрактальной. Для пространственной схемы, контактирующей с внешним миром всей своей поверхностью, E=3, a D может принимать любое значение между 2 и 3. Для плоской схемы, контакт которой с внешним миром осуществляется по всей длине ограничивающей ее кривой, E=2, a D может принимать любое значение между 1 и 2. Случай интегрального параллелизма D=E подразумевает, что граница имеет форму кривой или поверхности Пеано. Кроме того, если граница используется не полностью, «эффективной границей» может стать любая поверхность, размерность D которой находится в интервале от 0 до E.

Рис. 169. ОБЛАКА (о) И ЗОНЫ ДОЖДЕЙ (•). ГРАФИК ЗАВИСИМОСТИ ПЕРИМЕТРА ОТ ПЛОЩАДИ В ДВОЙНОМ ЛОГАРИФМИЧЕСКОМ МАСШТАБЕ (РИСУНОК ВЗЯТ ИЗ [319].)

13 ОСТРОВА, КЛАСТЕРЫ И ПЕРКОЛЯЦИЯ; СООТНОШЕНИЯ МЕЖДУ ДИАМЕТРОМ И КОЛИЧЕСТВОМ

Эта глава посвящена фрактальным σ-кривым, т. е. фракталам, которые состоят из бесконечного количества непересекающихся фрагментов, каждый из которых представляет собой связную кривую. Конкретные случаи охватывают широкий диапазон от береговых линий островов в архипелаге до такого важного физического феномена, как перколяция. Начальные разделы главы содержат новый материал, которого не было во «Фракталах» 1977 г.; остальная часть также в значительной степени обновлена.


Начнем с того, что перефразируем вопрос главы 5 и спросим, сколько же островов окружает берега Британии? Несомненно, их количество столь же велико, сколь и неопределенно. А если добавить к списку островов все скалы, малые скалы и просто торчащие над водой камни, то длина этого списка устремится чуть ли не к бесконечности.

Поскольку поверхность Земли весьма тщательно «сморщена», полная площадь любого острова — так же, как и длина его береговой линии — географически бесконечна. Однако области, окруженные береговыми линиями, имеют вполне определенную «картографическую площадь». А то, каким образом эта картографическая площадь разделена между различными островами, является важной географической характеристикой. Можно даже утверждать, что такое «соотношение между площадью и количеством» вносит больший вклад в понимание географических форм, чем описание очертаний отдельных береговых линий. Например, если мы будем рассматривать берега Эгейского моря, нам наверняка захочется включить сюда и берега его многочисленных островов. Этот вопрос, вне всякого сомнения, заслуживает самого тщательного количественного исследования, и в этой главе мы предпримем попытку такого исследования, воспользовавшись обобщением кривой Коха.

Далее мы рассмотрим разные другие фрагментированные фигуры, получаемые обобщением уже знакомых нам фракталообразующих процессов: либо процедуры Коха, либо створаживания. Эти фигуры мы будем называть контактными кластерами, причем распределение диаметров в зависимости от количества окажется для них таким же, что и для островов.

Особый интерес представляют контактные кластеры, заполняющие плоскость, в частности, кластеры, образуемые некоторыми кривыми Пеано, терагоны которых не имеют точек самопересечения, но имеют несколько тщательно контролируемых точек самокасания. В саге о приручении чудовищ Пеано появляется, таким образом, новая глава!

И последнее (только по порядку, а отнюдь не по значимости): в эту главу включена первая часть прецедентного исследования геометрии перколяции, весьма важного физического феномена, рассмотрение которого будет продолжено в главе 14.

ОБОБЩЕНИЕ ЭМПИРИЧЕСКОГО ЗАКОНА КОРЧАКА

Составим список всех островов некого региона в порядке уменьшения их размера. Общее количество островов, размер которых превышает a, будем записывать как Nr(A>a), < обозначение построено по подобию обозначения Pr(A>a), позаимствованного из теории вероятности. ► В данном случае a — это возможное значение картографической площади острова, а букву A будем использовать для обозначения площади неопределенной величины.

Обозначив через B и F' положительные константы (показатель и префактор, соответственно), получим следующее, весьма замечательное, соотношение между площадью и количеством:

Nr(A>a)=F'a−B.

Если мы захотим приписать кому-либо честь открытия этого правила, то лучше всех, пожалуй, подходит кандидатура И. Корчака [279] (хотя, по его утверждению, B=1/2, что я считаю невероятным и не обоснованным представленными в статье данными). Более того, значение B различно для различных регионов и всегда больше 1/2. Позвольте мне теперь показать, что вышеприведенный обобщенный закон является аналогом распределения, полученного нами в главе 8 для длин пустот в канторовой пыли.

КОНТИНЕНТ И ОСТРОВА КОХА. ИХ РАЗЛИЧНЫЕ РАЗМЕРНОСТИ

Для построения коховского аналога канторовых пустот я разбиваю генератор на два не связанных друг с другом элемента. Чтобы получаемая фрактальная кривая оставалась интерпретируемой как береговая линия, генератор включает в себя связную ломаную, состоящую из Nc<N звеньев и соединяющую концевые точки интервала [0, 1]. Этот элемент мы назовем берег-генератором, так как он определяет, каким образом изначально прямое побережье преобразуется в побережье фрактальное. Оставшиеся N−Nc звеньев образуют замкнутую петлю, которая «порождает» острова и называется поэтому остров-генератором. Ниже приводится пример такого составного генератора:

На последующих этапах построения субострова всегда находятся у левой половины берег-генератора (при движении от 0 к 1) и остров-генератора (при движении по часовой стрелке).

Первая неожиданность: предельный фрактал в этом случае характеризуется двумя различными размерностями. Собрав вместе береговые линии всех островов, получим D=lnN/ln(1/r), однако береговая линия каждого отдельного острова имеет размерность Dc=lnNc/ln(1/r), причем соблюдается неравенство

1≤Dc<D.

Суммарная береговая линия, не будучи связной, является сама по себе не кривой, а бесконечной суммой (Σ) замкнутых кривых (петель). Предлагаю ввести для ее обозначения термин сигма-петля (или σ- петля).

Заметим, что моделирование полученного соотношения между D и Dc при описании реальных островов требует некоторых дополнительных допущений, кроме, разумеется, тех случаев, когда его можно вывести из соответствующей теории (см. главу 29).

СООТНОШЕНИЕ МЕЖДУ ДИАМЕТРОМ И КОЛИЧЕСТВОМ

Доказательство применимости закона Корчака к островам, рассмотренным в последнем разделе, проще всего осуществляется тогда, когда генератор включает в себя один остров, а терагоны избегают самопересечений. (Напомню, что терагонами называются аппроксимирующие ломаные линии.) В этом случае на первом этапе создается один остров — обозначим его «диаметр», определяемый √a, через λ0. На втором этапе образуется N островов диаметра 0, а результатом m-го этапа будет Nm островов диаметра λ=rmλ0. В целом, всякий раз, как λ умножается на r, количество островов Nr(Λ>λ) умножается на N. Следовательно, распределение Λ (для всех значений λ вида rmλ0) описывается выражением

Nr(Λ>λ)=Fλ−D,

ключевым показателем в котором является фрактальная размерность береговой линии! Как следствие:

Nr(A>a)=F'a−B, где B=D/2;

т. е. мы самостоятельно вывели закон Корчака. При других значениях λ или a получится ступенчатая кривая, знакомая нам по главе 8, где она описывала распределение длин канторовых пустот.

Результат не зависит ни от Nc, ни от Dc. Его можно распространить на тот случай, когда генератор включает в себя два или более островов. Заметим, что эмпирически полученное значение B для всей Земли составляет величину порядка 0,6, что весьма близко к половине размерности D, полученной измерением длин береговых линий.

ОБОБЩЕНИЕ ДЛЯ СЛУЧАЯ Е > 2

Применив наше построение к пространству, мы убедимся в том, что E-мерный диаметр, определяемый как (объем)1/E, подчиняется гиперболическому выражению вида Nr((объем)1/E>λ)=Fλ−D, ключевым показателем в котором снова является D.

Показатель D оказывается определяющим и в особом случае канторовой пыли (E=1), однако здесь имеется одно существенное отличие. Длина за пределами канторовых пустот обращается в нуль, тогда как площадь за пределами «коховых островов» вполне может быть положительной (как, впрочем, чаще всего и бывает). К этому предмету мы вернемся в главе 15.

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ ИСКЛЮЧИТЕЛЬНО КАК МЕРА ФРАГМЕНТАЦИИ

Вышеописанное построение допускает следующее изменение генератора:

Общая величина D остается неизменной, однако береговая размерность Dc принимает наименьшее возможное значение, Dc=1. То есть в рамках этой модели береговые линии островов могут быть спрямляемы! В этом случае общая величина D определяет не степень иррегулярности, а единственно степень фрагментации. Размерность D характеризует здесь не извилистость отдельных кривых, а целое соотношение между количеством прямоугольных островов в бесконечном семействе и их площадью.

При измерении длины кривой шагом ε результат все еще стремится к бесконечности при ε→0, однако теперь для этого имеется другая причина. Шагом длины ε можно измерять только острова, диаметр которых не меньше ε. Однако по мере того, как ε→0, число таких островов возрастает, и измеренная длина изменяется пропорционально ε1−D — точно так же, как и в отсутствие островов.

В общем случае Dc>1, значение Dc характеризует только степень иррегулярности, в то время как D описывает степень иррегулярности и фрагментации в совокупности.

Фрагментированная фрактальная кривая может иметь касательные в любой точке. Закруглив углы островов, можно добиться того, что к береговой линии в любой ее точке можно будет провести касательную, причем площади островов — а с ними и общая размерность D — останутся неизменными. Таким образом, фрактальность σ- кривой и отсутствие у кривой касательных — вовсе не одно и то же.

БЕСКОНЕЧНОСТЬ ОСТРОВОВ

Безвредная расходимость. При a→0 количество островов Nr(A>a)=Fa−B стремится к бесконечности. Следовательно, закон Корчака вполне согласуется с нашим первоначальным наблюдением относительно практически бесконечного числа островов.

Относительная площадь наибольшего острова. Этот последний факт приемлем математически только потому, что суммарная площадь очень маленьких островов конечна и пренебрежимо мала, с Общая площадь всех островов, площадь каждого из которых меньше ε, изменяется пропорционально значению интеграла функции a(Ba−B−1)=Ba−B на интервале от 0 до ε. Так как B<1, интеграл сходится, и его значение B(1−B)−1ε1−B стремится к нулю по мере уменьшения ε. ►

Следовательно, относительный вклад самого большого острова в суммарную площадь всех островов стремится к некоторому положительному пределу по мере того, как увеличивается количество островов. Он отнюдь не является асимптотически пренебрежимым.

Относительная длина самой длинной береговой линии. С другой стороны, если Dc=1, то длины побережий оказываются распределены по гиперболическому закону с показателем D>1. То есть суммарная длина береговой линии маленьких островов становится бесконечной. По мере того, как продвигается построение и увеличивается число островов, длина побережья наибольшего острова становится величиной относительно пренебрежимой.

Относительно пренебрежимые множества. В более общем виде неравенство Dc<D выражает то обстоятельство, что длина кривой, построенной только с помощью генератора береговой линии, пренебрежимо мала по сравнению с длиной всего побережья. Аналогичным образом, прямая (D=1) пренебрежимо мала по сравнению с плоскостью (D=2). Примерно по той же причине, по какой точка, выбранная наугад на плоскости, практически никогда не попадает на ось x, точка, выбранная наугад на «сердцевинном» острове, со всех сторон окруженном субостровами, почти никогда не приходится на его береговую линию.

В ПОИСКАХ БЕСКОНЕЧНОГО КОНТИНЕНТА

В масштабно-инвариантной Вселенной различие между островом и континентом не может основываться на традиции или «относительном размере». Единственный разумный подход состоит в том, чтобы определить континент как особый остров бесконечного диаметра. Ниже я намерен показать, что построения, приведенные в начале главы, практически никогда не генерируют континентов. < Для тех, кто знаком с теорией вероятности: вероятность того, что такое построение даст в итоге континент, равна нулю. ►

При разумном подходе к поискам континента следует отказаться от раздельного выбора инициатора и генератора. С этого момента нам придется использовать один и тот же генератор и для интерполяции, и для экстраполяции. Процесс осуществляется в несколько последовательных этапов, каждый из которых разбивается на шаги. Он очень напоминает экстраполяцию канторова множества в главе 8, однако заслуживает более подробного описания.

Первый шаг укрупняет выбранный нами генератор в отношении 1/r. На втором этапе мы некоторым образом «помечаем» одно из звеньев увеличенного генератора. На третьем — смещаем увеличенный генератор так, чтобы помеченное звено совпало с интервалом [0, 1]. Четвертый и последний этап заключается в интерполяции оставшихся звеньев увеличенного генератора.

Процесс повторяется до бесконечности, причем его течение и результат определяются последовательностью положений «помеченных» звеньев. Эта последовательность может принимать различные формы.

Для получения первой формы берег-генератор должен включать в себя некоторое положительное число Nc−2 «некрайних» звеньев, которые, по определению, принадлежат генератору, но не содержат его концевых точек (0 или 1). Если мы последовательно помечаем некрайние звенья, каждый этап экстраполяции растягивает исходный участок береговой линии и в пределе приводит к включению этого участка во фрактальное побережье бесконечной протяженности в обоих направлениях. Следовательно, построение континентальной береговой линии, исходя из таких начальных условий, вполне возможно.

Вторая форма: всегда помечаем какое-либо из крайних звеньев берег-генератора, причем каждая из двух возможностей выбирается бесконечное количество раз. В этом случае исходный участок побережья также растягивается до бесконечности. Если каждый раз выбирать одно и то же звено, береговая линия будет удлиняться только в одном направлении.

Чтобы получить третью форму, будем всегда помечать звено, принадлежащее остров-генератору. Тогда остров, который до экстраполяции был самым большим, окажется вблизи берегов большего острова; после следующего этапа этот больший остров окажется у берегов еще большего острова, и т. д. до бесконечности. Континента при таком построении мы не получим вовсе.

В следующем замечании мы воспользуемся некоторой толикой «вероятностного здравого смысла», который, должно быть, не чужд ни одному читателю. Предположим, что помечаемое звено выбирается посредством броска N-гранной кости. Для того, чтобы получить при экстраполяции континент, необходимо, по всей видимости, чтобы всякая метка после некоторого конечного (k-ro) этапа попадала на одно из Nc−2 некрайних звеньев берег-генератора. Назовем эти звенья «выигрышными». Чтобы после k этапов иметь уверенность в том, что мы получим в итоге континент, мы должны быть уверены, что каждый последующий бросок нашей кости без единого исключения окажется выигрышным. Такая удача, безусловно, возможна, однако вероятность ее стремится к нулю.

КОМБИНАЦИИ ОСТРОВОВ, ОЗЕР И ДЕРЕВЬЕВ

Так как острова Коха взаимоподобны, их диаметр Λ можно переопределить как расстояние между двумя любыми заданными точками, которые лучше всего выбирать на береговой линии. Кроме того, при получении соотношения между диаметром и количеством мы пользовались, в основном, наличием у генератора береговой части. Тем же обстоятельством, что оставшиеся звенья генератора образуют острова, или тем, что они избегают самопересечений, мы так по-настоящему и не воспользовались. Таким образом, соотношение

Nr(Λ>λ)=Fλ−D.

имеет очень широкую область применения. < Можно даже отказаться от непременного условия отсутствия пересечений терагонов, образованных двумя интервалами. ► Покажем теперь на примерах, как конфигурация N−Nc исходных звеньев может повлиять на топологию образующегося фрактала.

Комбинация островов и озер. Ранее мы располагали остров- генератор слева и в направлении по часовой стрелке. Попробуем теперь расположить его также в направлении по часовой стрелке, но справа. В результате вместо островов мы получим озера. Кроме того, можно включить в один генератор u острова, u озера. В обоих случаях предельный фрактал представляет собой σ-петлю, компоненты которой вложены друг в друга. Рассмотрим, например, генератор

Если инициатором служит квадрат, мы получим на некотором отдаленном этапе построения следующий терагон:

Неуловимый континент. На вышеприведенном рисунке можно видеть, что длина стороны инициатора вносит не присущий генератору внешний порог. Более последовательным решением будет экстраполировать эту длину, как мы поступили в случае островов без озер. Однако и в этом случае мы можем быть почти уверены, что мы получим не континент, а лишь бесконечно вложенные друг в друга острова и озера.

Соотношение между площадью и количеством. При определении площади острова (или озера) можно исходить либо из общей площади фигуры, либо из площади суши (или воды) в пределах береговой линии. Эти две величины связаны между собой постоянным коэффициентом, т. е. влияют на количество Nr(A>a) через его префактор F', а не через показатель D/2.

Комбинация интервалов и деревьев. Допустим теперь, что оставшиеся N−Nc звеньев образуют либо ломаную с двумя свободными концами, либо дерево. В обоих случаях фрактал разделяется на бесконечное множество не связанных между собой элементов, каждый из которых представляет собой кривую. Такую сг-кривую уже нельзя считать σ-петлей; уместнее, пожалуй, будет назвать ее σ-деревом или σ-интервалом.

ПОНЯТИЕ КОНТАКТНОГО КЛАСТЕРА

Генератор может также сочетать в себе петли, ветви и разные другие топологические конфигурации. Связные части предельных фракталов, получаемых при таком построении, напоминают кластеры из теории перколяции (как будет показано позже в этой главе) и из многих других областей физики. Для нас использование термина «кластер» чрезвычайно неудобно, так как совсем недавно (при рассмотрении пылевидных множеств в главе 9) мы вкладывали в него несколько иной смысл. Стало быть, необходим более точный и — как следствие — более громоздкий термин. Я решил остановиться на словосочетании «контактный кластер». Хорошо еще, что в термине «сг-кластер» нет такой двусмысленности.

(Можно заметить, что контактный кластер имеет однозначное и естественное математическое определение, тогда как понятие кластеризации в пыли размыто и интуитивно и определяется, в лучшем случае, через весьма спорные статистические законы.)

Контактные кластеры, заполняющие плоскость. В случае, когда размерность D достигает своего максимума D=2, остаются в силе рассуждения из предыдущего раздела, однако возникает необходимость в кое-каких добавочных замечаниях. Каждый отдельный кластер стремится к некоторому пределу, который может представлять собой прямую или — как бывает чаще всего — фрактальную кривую. С другой стороны, все кластеры в совокупности образуют σ-кривую, ответвления которой заполняют плоскость в высшей степени плотно. В пределе эта σ-кривая ведет себя подобно кривым из главы 7: она перестает быть кривой и становиться областью плоскости.

Неуловимый бесконечный кластер. Данный подход ни в коем случае не подразумевает возможности образования действительно бесконечного кластера. Можно легко построить топологию генератора таким образом, чтобы любая данная ограниченная область была почти наверняка окружена контактным кластером. Этот кластер, в свою очередь, почти наверняка окажется окружен большим кластером и т. д. Размер кластера сверху ничем не ограничен. В более общем виде: если кластер представляется бесконечным только потому, что он окружает очень большую область, то стоит лишь вспомнить о том, что сам он окружен кластером еще большего размера, и конечный размер любого кластера перестанет вызывать сомнения.

СООТНОШЕНИЕ МЕЖДУ МАССОЙ И КОЛИЧЕСТВОМ. СООТНОШЕНИЕ МЕЖДУ ВЗВЕШЕННЫМ ДИАМЕТРОМ И КОЛИЧЕСТВОМ. ПОКАЗАТЕЛИ D-DC И D/DC

Переформулируем функцию Nr(Λ>λ) двумя способами: первый состоит в замене диаметра кластера λ его массой μ, второй — в назначении единице размера контактного кластера некоторого веса.

Массой кластера здесь называется просто количество звеньев длины b−k в самом кластере (только не считайте звенья внутри петельных кластеров). В сущности (см. главы 6 и 12), мы строим несколько модифицированную сосиску Минковского (рис. 57), размещая в каждой вершине квадрат со стороной b−k и добавляя по половине квадрата к каждой концевой точке.

Масса кластера диаметра Λ равна площади его модифицированной сосиски, M∝(Λ/bk)Dc(bk)2Dc/(bk)Dc−2. Поскольку Dc<2, масса M стремится к нулю при k→∞. Масса всех контактных кластеров в совокупности пропорциональна (bk)D−2; при D<2 она также стремится к нулю. Что касается относительной массы каждого отдельного кластера, то она пропорциональна (bk)Dc−D; скорость ее стремления к нулю возрастает при увеличении значения разности D−Dc.

Соотношение между массой и количеством. Очевидно, что

Nr(M>μ)∝(bk)−D+2D/Dcμ−D/Dc,

Распределение диаметра, наделенного массой. Заметим, что величина Nr(Λ>λ) представляет собой количество строк, расположенных выше строки с номером λ в списке, в котором перечисляются контактные кластеры в порядке уменьшения их размеров. Однако сейчас нам необходимо сопоставить каждому контактному кластеру количество строк, равное его массе. Как нетрудно убедиться, окончательное выражение имеет вид

Wnr(Λ>λ)∝λ−D+Dc.

МАССОВЫЙ ПОКАЗАТЕЛЬ Q=2DC-D

Обозначим фрактал размерности D, рекурсивно построенный из инициатора [0, Λ], через F и примем его общую массу за ΛD. Если F — канторова пыль, то, как нам известно из главы 8, масса M(R), содержащаяся в диске радиуса R<Λ с центром в нуле, пропорциональна RD. < Величина ln[M(R)R−D] представляет собой периодическую функцию от logb(Λ/R), однако мы не станем задерживаться на этих сложностях, так как они исчезают, стоит лишь модифицировать фрактал таким образом, чтобы все значения r>0 оказались допустимыми коэффициентами самоподобия. ►

Мы знаем, что правило M(R)∝RD применимо также к кривой Коха (см. главу 6). Кроме того, оно распространяется и на рекурсивные острова и кластеры, рассматриваемые в этой главе, только D следует заменить на Dc. Во всех случаях масса, содержащаяся в диске радиуса R с центром в нуле, определяется выражением

M(R,Λ)=RDcφ(R/Λ),

гдеφ — функция, выводимая из формы фрактала F. В частности:

M(R,Λ)∝RDcпри R≪Λ;

M(R,Λ)∝ΛDcпри R≫Λ.

Рассмотрим теперь среднее взвешенное значение M(R) в случае, когда Λ изменяется в соответствии с весьма широким гиперболическим распределением Wnr(Λ>λ)∝λ−D+Dc, и обозначим это среднее через <M(R)>. Известно, что 1≤Dc<D≤2. Исключив сочетание D=2 и Dc=1, можно записать 0<D−Dc<Dc. Следовательно,

<M(R)>∝RQ, где Q=2Dc−D>0.

Когда центр диска находится не в точке 0, а в какой-либо другой точке фрактала F, изменяется только коэффициент пропорциональности, тогда как показатель остается неизменным. Не изменяется он и при усреднении по всем положениям центра в F, и при замене интервала [0, 1] другим инициатором. < Обычно берут дугу кривой произвольной длины Λ и произвольной же формы. Вышеприведенные формулы для M(R,Λ) применимы и для <M(R,Λ)>, усредненного по всем формам. Окончательный результат всегда одинаков. ►

Замечание. Предыдущее рассуждение никак не зависит от топологии кластеров — они могут быть петлями, интервалами, деревьями или чем-нибудь еще.

Вывод. Формула <M(R)>∝RQ показывает, что при гиперболическом распределении величины Λ и, как следствие, очень широком ее разбросе, одну из существенных ролей размерности берет на себя некий показатель, отличный от D. Обычно он равен 2Dc−D, однако различные весовые функции дают различные показатели Q.

Предостережение: не всякий массовый показатель является размерностью. Составная величина Q представляет собой весьма важную характеристику. А так как это массовый показатель, возникает искушение назвать его размерностью, однако это искушение ничем не обосновано. При слиянии различных кластеров с одинаковой размерностью Dc, но разными Λ, Dc не изменяется, поскольку размерность — это не свойство совокупности различных множеств, но свойство каждого отдельного множества. И D, и Dc являются фрактальными размерностями, a Q — нет.

Обобщая, можно сказать, что во многих областях физики известны соотношения вида <M(R)>∝RQ однако сама по себе эта формула еще не гарантирует того, что Q непременно будет фрактальной размерностью. Называть же Q эффективной размерностью, как предлагают некоторые авторы, все равно, что попусту сотрясать воздух, так как Q не обладает ни одним из остальных свойств, характеризующих D как размерность (например, суммы или произведения размерностей D имеют смысл, которому нет аналогов в случае Q). Более того, эти пустые слова оказываются источником возможных недоразумений.

РАССРЕДОТОЧЕННЫЕ КЛАСТЕРЫ, ПОЛУЧАЕМЫЕ ПРИ СТВОРАЖИВАНИИ

Существует еще два метода построения контактных кластеров. Первый основан на створаживании и применим в случае D<2, второй использует кривые Пеано и пригоден для случая D=2. Читатели, интересующиеся перколяцией, могут пропустить этот и следующий за ним разделы.

Начнем с замены построения Коха естественным обобщением кан- торова створаживания на плоскость. В качестве иллюстрации на нижеследующем рисунке представлены пять примеров генераторов, под которыми помещены последующие этапы построения:

Во всех этих случаях предельный фрактал имеет нулевую площадь и не содержит внутренних точек. Его топология зависит от формы генератора и может быть весьма разнообразной.

В случае генератора A предтворог на каждом этапе построения представляет собой связное множество, а предельный фрактал оказывается кривой — примером может служить чрезвычайной важности конструкция (называемая ковром Серпинского), которую мы подробно рассмотрим в главе 14.

В случае генератора Д предтворог распадается на несвязные участки, максимальный линейный масштаб которых неуклонно уменьшается по мере того, как k→∞. Предельный фрактал представляет собой пыль, аналогичную той, что мы наблюдали в модели Фурнье (глава 9).

Генераторы Б, В и Г более интересны: здесь предтворог распадается на части, которые мы назовем предкластерами. Можно сказать, что на каждом этапе «старые» предкластеры преобразуются в более тонкие и извилистые конструкции и появляются «новые» предкластеры. Посредством тщательного выбора генераторов мы добиваемся того, что каждый новорожденный предкластер оказывается целиком заключен в одной-единственной ячейке наимельчайшей решетки предыдущего этапа построения. По контрасту с «перекрестно сосредоточенными кластерами» следующего раздела я предлагаю назвать эти кластеры «рассредоточенными». Таким образом, размерность предельных контактных кластеров имеет вид lnNc/lnb, где Nc — целое число, не превышающее количества ячеек в самом большом компоненте генератора. Значение Nc достигает своего максимума, т. е. становится равным количеству ячеек, в случае генераторов Б и В, чьи контактные кластеры представляют собой, соответственно, интервалы с Dc=1 и фрактальные деревья с Dc=ln7/ln4. Во фрактале же, построенном с помощью генератора Г, величина Nc максимума не достигает: в этом случае F-обрачные предкластеры продолжают разделяться на все более мелкие части, и в пределе мы снова получаем прямые интервалы с Dc=1.

Соотношение между диаметром и количеством и другие выводы предыдущего раздела остаются в силе и в том случае, если заменить псевдо-сосиску Минковского совокупностью ячеек со стороной b−k, частично совпадающей с каким-либо контактным кластером.

ПЕРЕКРЕСТНО СОСРЕДОТОЧЕННЫЕ КЛАСТЕРЫ, ПОЛУЧАЕМЫЕ ПРИ СТВОРАЖИВАНИИ

Придадим генератору плоского створаживания одну из приведенных ниже форм (справа от каждого генератора показан результат следующего этапа построения):

Оба случая демонстрируют массивное «перекрестное сосредоточение», т. е. каждый новорожденный предкластер соединяет в себе элементы, принадлежащие на предыдущем этапе построения нескольким ячейкам наимельчайшей решетки.

В контексте кохова построения аналогичная ситуация возникает в том случае, когда допускается самокасание терагонов, в результате чего происходит слияние малых кластеров. В обоих случаях анализ довольно громоздок, и мы не можем останавливаться на нем подробно. Скажем лишь, что для малых λ соотношение Nr(Λ>λ)∝λ−D остается верным.

< Если кто-нибудь все же попытается оценить величину D на основании этого соотношения, не исключив из рассмотрения больших λ, то полученная оценка будет систематически отклоняться от истинного значения, оказываясь, как правило, меньше него. ►

Величина bDc приобретает новые, неизвестные ранее свойства. Нет, например, необходимости в том, чтобы она обязательно была целым числом, выводимым из формы генератора путем простого наблюдения; она может быть и дробью. Причина заключается в том, что каждый контактный кластер сочетает в себе: (а) целое число своих собственных версий, уменьшенных с коэффициентом 1/b, и (б) множество уменьшенных версий, возникающих при сосредоточении, причем коэффициентами подобия здесь являются меньшие соотношения вида rm=b−k(m). Переписав генерирующее размерность уравнение ∑rmD=1 (см. с. 87) в переменных x=b−D, получим уравнение ∑amxm=1. Случаи, когда 1/x — целое число, могут рассматриваться лишь как исключения.

ПРИРУЧЕНИЕ ЗАУЗЛЕННЫХ ЧУДОВИЩ ПЕАНО

Створаживанием нельзя получить заполняющую плоскость совокупность кластеров (D=2), однако я обнаружил возможность альтернативного подхода к задаче: нужно лишь воспользоваться кривыми Пеано — правда, несколько иными, нежели те, что были приручены в главе 7. Как читатель, несомненно, помнит, кривые Пеано, терагоны которых избегают самопересечений, порождают деревья рек и водоразделов. Другие терагоны Пеано (например, терагоны на рис. 95, если оставить углы нескругленными) представляют собой просто заполненные ячейки решетки. По мере продолжения построения пустые ячейки, разделяемые такими кривыми, «сходятся» в повсюду плотную пыль (например, состоящую из точек, ни одна координата которых не кратна b−k).

Между этими крайностями существует еще один весьма интересный класс кривых Пеано. Ниже представлен примерный генератор одной такой кривой вместе с результатом следующего этапа построения:


Теперь мы готовы приручить и этот класс кривых Пеано. На рисунке видно, что каждая точка самокасания «заузливает» открытый предкластер, который затем может обзавестись ветвями и точками самокасания, потерять при «разузливании» некоторые части самого себя и, в конце концов, превратиться в тонкую и в высшей степени разветвленную кривую, определяющую контактный кластер. Согласно нашему определению, данному в предыдущих разделах, диаметр кластера Λ остается постоянным с момента его рождения и приблизительно равен длине стороны «породившего» кластер квадрата. Его распределение подчиняется уже известному нам соотношению Nr(Λ>λ)∝λ−2.

Заметим мимоходом, что в отличие от коховых контактных кластеров, которые являются пределами рекурсивно построенных кривых, данные кластеры представляют собой пределы (в своем роде) открытых компонентов дополнения кривой.

КЛАСТЕРЫ В БЕРНУЛЛИЕВОЙ ПЕРКОЛЯЦИИ

Какой бы метод ни использовался при генерации фрактальных контактных кластеров с размерностями D=E и Dc<D, они представляют собой геометрическую модель, в которой до недавних пор весьма нуждались физики для разрешения одной очень важной проблемы — бернуллиевой перколяции сквозь решетки. Дж. М. Хаммерсли, сформулировавший и первым исследовавший эту проблему, не употреблял в данном контексте имени Бернулли, однако из-за фрактальной перколяции, с которой мы встретимся в главе 23, нам придется здесь пользоваться полным термином. (Этот термин был также принят в [530], причем независимо от меня.)

Литература. Всем желающим рекомендую следующие обзорные материалы по бернуллиевой перколяции: [520], [112] (особенно хороша глава, написанная Дж. У. Эссамом), [266], [98], [536] и [134].

Определения. Понятие перколяции включает в себя некоторые элементы из теории вероятности, поэтому, если быть до конца последовательными, нам не следовало бы обсуждать его на данном этапе. Однако некоторая толика непоследовательности приносит порой неплохие результаты. Простейшей задачей о перколяции для случая E=2 является перколяция по связям на квадратной решетке. Для упрощения картины представим себе большую квадратную решетку, составленную из двух видов стержней: одни сделаны из изолирующего винила, другие — из электропроводящей меди. Такая решетка может считаться решеткой Бернулли, если каждый стержень выбран совершенно случайно, независимо от других стержней, причем вероятность выбора проводящего стержня равна p. Наибольшие скопления связанных между собой медных или виниловых стержней называются, соответственно, медными или виниловыми кластерами. Если решетка содержит хотя бы одну непрерывную цепочку медных стержней, электрический ток сможет пройти всю решетку насквозь, от одного края до другого. В таких случаях говорят, что решетка перколирует. (От латинского per «сквозь» и colare «течь».) Все стержни, находящиеся в неразрывном электрическом контакте одновременно с верхним и нижним краями решетки, образуют «перколяционный кластер», а стержни, непосредственно участвующие в передаче, составляют так называемую «магистраль» кластера.

Обобщение на решетки другой формы и на структуры с E>2 очевидно.

Критическая вероятность. Наиболее замечательная находка Хаммерсли имеет отношение к особой роли некоторой пороговой вероятности или, как он ее назвал, критической вероятности pкрит. Эта величина появляется на сцене, когда размер решетки Бернулли (измеряемый числом стержней) стремится к бесконечности. Оказывается, когда p>pкрит, вероятность существования перколяционного кластера возрастает с размером решетки и стремится к единице. Когда же p<pкрит, вероятность перколяции устремляется к нулю.

Поскольку в случае перколяции по связям на квадратных решетках дело обстоит таким образом, что либо медь, либо винил должны перколировать, то pкрит=1/2.

Аналитическая масштабная инвариантность. Изучение перколяции уже довольно давно вылилось в поиски аналитических выражений, которые связали бы между собой стандартные физические величины. Выяснилось, что все эти величины обладают свойством масштабной инвариантности в том смысле, что отношения между ними задаются степенными законами. При p≠pкрит масштабная инвариантность сохраняется вплоть до внешнего порога, величина которого зависит от p−pкрит и обозначается через ξ. По мере того, как p→pкрит, порог ξ→∞. Физики постулируют (см. [536], с. 21), что величина <M(R,Λ)> следует правилу, полученному нами на с. 180.

ФРАКТАЛЬНАЯ ГЕОМЕТРИЯ КЛАСТЕРОВ

Форма кластеров. Допустим, что p=pкрит, а длина каждого отдельного стержня уменьшается, в то время как общий размер решетки остается постоянным. Кластеры при этом становятся все более тонкими («кожа да кости»), все более извилистыми и разветвленными. В частности [293], количество стержней, расположенных вне кластера, но по соседству с каким-либо стержнем, принадлежащим кластеру, приблизительно пропорционально количеству стержней внутри кластера.

Гипотеза о фрактальных кластерах. Вполне естественно предположить, что масштабная инвариантность — свойство не только аналитическое, но распространяется и на геометрию кластеров. Однако эту идею нельзя осмыслить средствами стандартной геометрии, поскольку кластеры отнюдь не являются прямыми линиями. Фрактальная же геометрия, можно сказать, просто создана для устранения таких трудностей: как следствие, я высказал предположение, что кластеры можно представить в виде фрактальных σ-кривых, удовлетворяющих равенствам D=2 и 1<Dc<D. Это предположение было принято и оказалось весьма плодотворным. Подробнее мы рассмотрим его в главе 36.

< Строго говоря, масштабно-инвариантные фракталы были призваны представлять только те кластеры, которые не усечены границей исходной решетки. Это исключает из рассмотрения сам перколяционный кластер. (Термин кластер обладает чудесным даром создавать путаницу, вы не находите?) Для объяснения возникающего осложнения представим себе чрезвычайно большую решетку, выберем на ней какой-нибудь кластер и квадрат меньшего размера, наложенный на этот кластер. По определению, пресечение кластера и квадрата включает в себя меньший перколяционный кластер, однако оно же включает в себя и «остаток», который соединяется с меньшим перколяционным кластером посредством связей, находящихся вне квадрата. Заметим, что пренебрежение этим остатком смещает вниз оценку Dc. ►

Неслучайные фрактальные модели — очень приближенные, но конкретные. Для того, чтобы утверждение о фрактальной природе какого-либо естественного феномена было обоснованным, его следует сопроводить описанием конкретного фрактального множества, которое могло бы послужить моделью этого явления в первом приближении или хотя бы дать нам возможность представить его перед мысленным взором. Моя модель береговых линий, основанная на кривых Коха, или модель галактических скоплений Фурнье показывают, что такое приближенное неслучайное представление может оказаться весьма полезным. Я полагаю также, что рекурсивно построенные контактные кластеры (подобные тем, что рассматриваются в этой главе) могут снабдить нас полезными фрактальными моделями слабо изученного естественного феномена, который обычно моделируется кластерами Бернулли.

Однако сами кластеры Бернулли полностью изучены (по крайней мере, принципиально), и следовательно, их моделирование с помощью явных рекурсивных фракталов представляет собой несколько иную задачу. Рассмотренные мною коховы контактные кластеры для этого случая не годятся из-за асимметрии между виниловыми и медными стержнями, которая сохраняется даже при равных количествах стержней обоих видов. Далее на очереди заузленные кластеры Пеано. Возьмем терагон на некотором отдаленном этапе построения и покроем ячейки, расположенные слева от кривой, медью, а остальные — винилом. Результат представляет собой форму перколяции относительно ячеек решетки (или их центров, называемых узлами). Задача становится симметричной. Однако она отлична от задачи Бернулли, так как получаемая конфигурация медных и виниловых ячеек очень отличается от той, какой она могла бы быть при независимом их распределении: например, в бернуллиевой решетке девять ячеек, образующих суперквадрат, могут целиком состоять из меди или винила, тогда как в случае заузленной кривой Пеано это невозможно. (С другой стороны, обе модели позволяют группам из четырех ячеек, образующих суперквадрат, принимать любые возможные конфигурации.) Эта разница имеет далеко идущие последствия: например, в задаче о бернуллиевой перколяции по узлам с p=1/2 не перколируют ни медь, ни винил, тогда как в случае заузленных кластеров Пеано перколируют и медь, и винил (учитывая, что p=1/2 — критическая вероятность).

Перечень вариантов бернуллиевой перколяции по связям уже довольно обширен и может быть с легкостью продлен. Я же успел рассмотреть множество вариантов рекурсивно построенных фрактальных контактных кластеров. Детальное сравнение этих двух перечней, к сожалению, заняло бы слишком много места, и потому я не стану приводить его здесь.

Позвольте мне ограничиться весьма расплывчатым выводом о том, что фрактальная сущность задачи о бернуллиевой перколяции в значительной степени иллюстрируется неслучайными заполняющими пространство σ-кластерами, определенными ранее в этой главе. Основная слабость данной модели заключается в том, что за пределами уже сказанного она остается совершенно неопределенной. Ее можно подогнать к любой степени иррегулярности и фрагментации. На предмет топологии см. главу 14.

Модель критических кластеров. Рассмотрим, в частности, критические кластеры, определяемые как кластеры при p=pкрит. Для их представления экстраполируем рекурсивный σ-кластер, как показано ранее в этой главе. Затем, остановив интерполяцию, усечем его таким образом, чтобы положительный внутренний порог оказался равен размеру ячейки в исходной решетке.

Модели некритических кластеров. Для того, чтобы распространить эту геометрическую картину на некритические кластеры, т. е. на кластеры при p≠pкрит, нам необходимы фракталы с положительным внутренним и конечным внешним порогами. Аналитические рассуждения показывают, что протяженность наибольшего медного кластера составляет величину порядка ξ при p<pкрит и уходит в бесконечность при p>pкрит. Оба варианта легко осуществимы. Можно, например, начать с того же генератора, что и в предыдущем подразделе, однако вместо естественной его экстраполяции, подставим в качестве инициатора одну из следующих фигур:

Докритические кластеры. Инициатор на рисунке слева (построенный с таким расчетом, чтобы p<pкрит) составлен из квадратов с длиной стороны ξ/2. Применяя выбранный генератор к левым сторонам квадратов, будем помещать его внутри квадратов, во всех же остальных случаях — снаружи. Квадрат инициатора превратится при этом в нетипичный кластер протяженности ξ, окруженный множеством типичных кластеров протяженности .

Сверхкритические кластеры. Инициатор на рисунке справа (построенный так, чтобы p>pкрит) составлен из тех линий исходной квадратной решетки, координаты которых (x или y) являются четными целыми числами. Из каждого узла (координаты которого являются четными целыми числами) исходят по четыре связи; выбранный генератор всегда помещается слева. В особом случае, когда берег-генератор не содержит ни петель, ни свободных концов, получающаяся картинка представляет собой дерандомизированный и систематизированный вариант грубой модели кластеров, основанной исключительно на «узлах и связях».

Заметим, что фрактально-геометрическое представление выводит некритические кластеры из критических, в то время как физики предпочитают рассматривать критические кластеры как предельный случай некритических кластеров при ξ→∞.

РАЗМЕРНОСТЬ DС КРИТИЧЕСКИХ БЕРНУЛЛИЕВЫХ КЛАСТЕРОВ

Значение Dc непосредственно выводится либо из показателя D/Dc=E/Dc в формуле для Nr(M>μ), либо из показателя Q=2Dc−D=2Dc−E в формуле для <M(R)>. Введя греческие буквы τ, σ и η в обычном для данного контекста значении, получим E/Dc=τ−1 и 2Dc−E=2−η. Отсюда

Dc=E/(τ−1)=E/(1+σ−1)

и Dc=1+(E−η)/2.

Благодаря установленным физиками соотношениям между величинами τ, σ и η, мы знаем, что вышеприведенные формулы для Dc эквивалентны. И наоборот, их эквивалентность имеет не только физические корни, поскольку следует из геометрических соображений.

Харрисон, Бишоп и Куинн [198], Киркпатрик [267] и Штауффер [536] независимо друг от друга получили одинаковое значение Dc. Они отталкиваются от свойств кластеров при p>pкрит и, как следствие, выражают полученный результат с помощью различных критических показателей (β, γ, v и σ). За их рассуждениями не стоит никакой конкретной фрактальной картины. Примером опасностей, таящихся в таком подходе (относительно которого я уже предостерегал ранее в этой же главе), может послужить тот факт, что он привел Стенли [533] к заключению: величины Q и Dc являются одинаково законными размерностями.

В случае E=2 численное значение Dc равно 1,89. Оно согласуется с эмпирическими свидетельствами, полученными с помощью определенной процедуры, знакомой нам по другим задачам. Возьмем некоторую величину r, которая, кстати, вовсе не обязана иметь вид 1/b, где b — целое число. Теперь возьмем большой вихрь, который в сущности представляет собой квадратную или кубическую решетку со стороной 1. Покроем его субвихрями со стороной r, сосчитаем количество N квадратов или кубов, пересекающих кластер, и вычислим приближенное значение размерности lnN/ln(1/r). Повторим процесс с каждым непустым субвихрем со стороной r, покрыв его субсубвихрями со стороной r2. И так далее, по возможности большее число раз. Наиболее осмысленные результаты дает r, близкое к 1. В некоторых ранних экспериментах [391, 192] была получена смещенная оценка D+~1,77, однако последующее, более обширное, моделирование [537] подтвердило теоретическое значение D.

< Смещенное экспериментальное значение D+ очень близко к Q; на какой-то миг может даже показаться, что это подтверждает теоретические рассуждения [534] и [391], которые ошибочны в том, что объявляют величину Q размерностью. Мое внимание на эту ошибку обратил С. Киркпатрик. Еще одну, более раннюю, отличную от вышеприведенной, но также ошибочную оценку D можно найти в статье [293]. ►

КИПАРИСОВЫЕ РОЩИ ОКЕФЕНОКИ

Если взглянуть с самолета на лес, за которым никто систематически не «присматривает», можно увидеть, что его граница весьма напоминает береговую линию острова. Контуры отдельных групп деревьев чрезвычайно извилисты и изрезаны, и по соседству с каждой большой группой расположены меньшие группы различного размера. Мое предположение о том, что эти формы могут подчиняться закону Ричардсона и/или/ закону Корчака, было полностью подтверждено в неопубликованном исследовании болота Окефеноки (см. [261]), предпринятом X. М. Хейстингсом, Р. Монтиччиоло и Д. вун Канноном. Наиболее изрезанными оказались контуры кипарисовых рощ (D~1,6); гораздо слабее выражена изрезанность широколиственных и смешанных лесов: размерность D их границ приближается к 1. Мои информаторы отмечают наличие впечатляющего разнообразия масштабов как при личном наблюдении, так и при изучении карт растительности. Имеется, кстати, и внутренний порог, равный приблизительно 40 акрам, — возможно, следствие особенностей аэрофотосъемки.

14 ВЕТВЛЕНИЕ И ФРАКТАЛЬНЫЕ РЕШЕТКИ

В главе 6 мы рассматриваем плоские кривые Коха с размерностью D<2, которые не содержат двойных точек, благодаря чему их можно назвать лишенными самопересечений или неразветвленными. А глава 7 посвящена кривым Пеано, неизбежным пределом для которых являются повсюду плотные двойные точки. В настоящей главе мы намерены сделать следующий шаг и исследовать некоторые примеры намеренно разветвленных самоподобных фигур: плоских кривых (1<D<2), пространственных кривых (1<D<3) и поверхностей (2<D<3). Количество двойных точек в разветвленной самоподобной кривой стремится к бесконечности.


Математический аппарат, используемый в этой главе, не нов (хотя и известен очень немногим специалистам) — новым является мое применение его для описания Природы.

САЛФЕТКА СЕРПИНСКОГО - ОЧЕРЕДНОЕ ЧУДОВИЩЕ

Я предложил термин салфетка Серпинского для обозначения фигуры, изображенной на рис. 205. На рис. 207 показан пространственный вариант той же фигуры. Процедуры их построения описаны в пояснениях к рисункам.

У Хана [190] читаем: «Точка кривой называется точкой ветвления, если граница сколь угодно малой ее окрестности содержит более чем две точки, принадлежащие той же кривой... Здравый смысл, судя по всему, настаивает на том, что никакая кривая просто не может состоять из одних лишь ... точек ветвления. Это очевидное убеждение опровергается ... кривой Серпинского, все точки которой являются точками ветвления».

ЭЙФЕЛЕВА БАШНЯ: ПРОЧНОСТЬ И ИЗЯЩЕСТВО

И опять Хан со своими взглядами сел в лужу, хотя надо признать, что не характерный для него выбор слов («судя по всему») оказывается весьма мудр. Мой первый контраргумент позаимствован из достижений инженерной мысли. (Перед тем, как приступить к рассмотрению компьютерных структур в конце главы 12, я уже говорил о том, что не усматриваю ничего нелогичного во включении искусственных систем со сложной структурой в настоящий труд, посвященный феноменам Природы.)

Я утверждаю, что (задолго до Коха, Пеано и Серпинского) в построенной Гюставом Эйфелем в Париже башне была осознанно воплощена идея фрактальной кривой, содержащей множество точек ветвления.

В первом приближении Эйфелева башня состоит из четырех А-образных элементов. Согласно легенде, Эйфель выбрал букву А, чтобы выразить в своей башне слово Amour. Все четыре А-образных элемента имеют общую вершину, а соседние А — общее ребро. Кроме того, на верхушке возвышается еще одна, прямая, башня.

Заметьте, что и А-элементы, и верхняя башня сделаны не из цельных балок, а из колоссальных ферм. Фермой называется жестко скрепленная совокупность взаимосвязанных звеньев, каждое из которых не может быть деформировано без деформации, по крайней мере, одного из соседних звеньев. При одинаковой прочности фермы оказываются значительно легче цельных цилиндрических балок. А Эйфель сообразил, что фермы, звенья которых сами являются фермами, еще легче.

Бакминстер Фуллер открыл миру глаза на то, что секрет прочности скрыт в точках ветвления, однако умудренные опытом строители готических соборов знали об этом задолго до него. Чем дальше мы заходим в применении этого принципа, тем ближе подбираемся к идеалу Серпинского! Бывший ученик Безиковича Фримен Дайсон в поисках прочных и легких конструкций для своих межпланетных построек описал однажды бесконечно экстраполированную Эйфелеву башню ([125], с. 646).

КРИТИЧЕСКИЕ ПЕРКОЛЯЦИОННЫЕ КЛАСТЕРЫ

Вернемся снова к природе, вернее, к образу природы, описываемому статистической физикой. Я полагаю, что при изучении перколяции сквозь решетки нам просто не обойтись без кого-нибудь из родственников салфетки Серпинского. В главе 13, открывающей рассмотрение данного прецедента, утверждалось, что перколяционные кластеры фрактальны. Теперь я пойду дальше и скажу, что разветвленная структура салфетки Серпинского представляет собой весьма многообещающую модель структуры магистралей кластеров.

Физики оценят эту модель главным образом по тому факту, что она работает, и работает быстро: в статье [166] показано, что с помощью такой модели можно выполнять обычные вычисления точно. Подробности слишком специальны для того, чтобы войти в настоящее эссе, а вот причины, благодаря которым я пришел к этим выводам, могут оказаться интересными. Впервые я задумался об этом, когда заметил сходство между салфеткой Серпинского и магистралями кластеров, показанными на следующем рисунке:

Наиболее явная причина заключена в тремах, оставшихся пустыми после удаления болтающихся связей (образовавшихся после сокращения кластера до магистрали) и кластеров, целиком содержащихся внутри заинтересовавшего меня кластера. Вторая причина: в главе 13 мы показали, что самоподобие является в высшей степени желательным свойством для геометрической модели перколяционного кластера, а ветвление салфетки Серпинского как раз самоподобно. И наконец, размерности этих двух структур настолько близки, что это едва ли может быть простым совпадением! Согласно оценке С. Киркпатрика, плоский кластер имеет размерность D~1,6 — поразительно близко к размерности D салфетки Серпинского! Размерность же пространственного кластера D~2,0 почти совпадает с фрактальной размерностью асимметричной паутины на рис. 207. Кроме того, в [166] показано, что идентичность размерности D магистрали и размерности обобщенной салфетки сохраняется и в R4. Еще один аргумент в пользу «салфеточной» модели мы представим несколько позже в виде последнего приложения ветвления.

ТРОИЧНЫЙ КОВЕР СЕРПИНСКОГО

Перейдем от треугольных решеток к прямоугольным. Они демонстрируют большое разнообразие возможных конструкций — кривых на плоскости и в пространстве и поверхностей в пространстве. Что касается кривых, то они, несмотря на внешнее сходство с салфеткой Серпинского, весьма отличны от нее с фундаментальной точки зрения на ветвление, к которой мы еще вернемся после определения этих кривых.

Буквальное распространение на плоскость канторова метода удаления средних третей описано в пояснении к рис. 205; инициатором такого построения служит квадрат. Фрактал, получаемый бесконечным повторением этого процесса, широко известен под непритязательным названием троичного ковра Серпинского. Его размерность D=ln8/ln3=1,8927.

НЕТРОИЧНЫЕ ФРАКТАЛЬНЫЕ КОВРЫ

Для построения «ковра с большим медальоном в центре» запишем, как обычно, r=1/b, где b — целое число, большее 3; в качестве инициатора возьмем квадрат, в качестве тремы — квадрат со стороной 1−2r с центром в той же точке, а в качестве генератора — узкое кольцо из 4(b−1) квадратов со стороной r. Размерность такого ковра имеет вид D=ln[4(b−1)]/lnb. Если взять нечетное целое b>3, в качестве тремы — один подквадрат со стороной г и с центром в той же точке, что и центр инициатора, а в качестве генератора — широкое кольцо из (b3−1) малых квадратов, то получится «ковер с малым медальоном в центре». Размерность такого ковра имеет вид D=ln(b3−1)/lnb. Таким образом, в центрированных коврах можно получить сколь угодно близкое приближение к любому значению D в интервале от 1 до 2.

Нецентрированные ковры определяются при b≤2. Например, при b=2 и N=3 можно разместить трему, состоящую из одного подквадрата, в правом верхнем подквадрате. Соответствующее предельное множество оказывается салфеткой Серпинского, построенной из треугольника, образующего левую нижнюю половину квадрата.

ТРОИЧНАЯ ФРАКТАЛЬНАЯ ПЕНА

Буквальное распространение троичного ковра на пространство начинается с удаления из куба в качестве тремы среднего подкуба (27-й части объема исходного куба), после чего остается «оболочка» из 26 подкубов. Получаемый посредством такой процедуры фрактал я предлагаю назвать троичной фрактальной пеной. Ее размерность D=ln26/ln3=2,9656.

Каждая трема здесь со всех сторон окружена непрерывной границей, разделенной на бесконечное множество бесконечно тонких слоев бесконечной плотности. Для того, чтобы попасть из точки, расположенной в одной треме, в точку, расположенную в другой треме, необходимо пройти сквозь бесконечное количество слоев. Это напоминает «пространственно-временную пену», которая, согласно Дж. А. Уилеру и Дж. У. Хокингу, составляет тончайшую структуру материи. Вынужден, однако, признаться, что я не владею этой темой в достаточной степени, поэтому не решусь обсуждать ее здесь.

ТРОИЧНАЯ ФРАКТАЛЬНАЯ ГУБКА МЕНГЕРА

Карл Менгер предлагает в качестве тремы другую фигуру: крест, из центра которого спереди и сзади торчит по выступу. При этом от куба остается N=20 связанных друг с другом подкубов со стороной 1/3. Из этих подкубов двенадцать образуют «брусья» или веревки, а остальные восемь являются узлами или соединителями. Размерность предельного множества (см. рис. 208) составляет D=ln20/ln3=2,7268. Я называю эту структуру губкой, так как здесь и творог, и сыворотка представляют собой связные множества. Можно представить себе, как между двумя любыми точками области сыворотки свободно течет вода.

Чтобы получить комбинацию веревок и листов, возьмем в качестве тремы троичный крест всего лишь с одним выступом — спереди. А если при этом время от времени менять направление выступа, то листы в предельной конструкции получатся дырявыми. Возможно, здесь следует упомянуть и о том, что я размышлял обо всех этих формах, когда искал модели для описания турбулентной перемежаемости, — еще до того, как прочел о них у Менгера.

НЕТРОИЧНЫЕ ГУБКИ И ПЕНЫ

Для получения обобщенных губок Менгера с нетроичным основанием b>3, трема должна представлять собой комбинацию из трех цилиндров с квадратными основаниями с соблюдением следующих условий: ось каждого из цилиндров должна совпадать с одной из осей единичного куба, длина каждого цилиндра должна быть равна 1, а стороны его основания должны быть параллельны другим осям куба. Чем больше длина стороны основания, тем «легче» получаемая губка. Наибольшая возможная длина стороны основания для случая E=3 составляет 1−2/b, генератор при этом имеет вид комбинации 12b−16 кубов со стороной r=1/b. Отсюда размерность D=ln(12b−16)/lnb. Аналогичным образом получаем «плотную» губку (только при нечетном b) — длина стороны основания цилиндра в этом случае равна 1/b. При E=3 генератор имеет вид комбинации b3−3b+2 кубов со стороной r=1/b. И размерность теперь равна D=ln(b3−3b+2)/lnb.

Фрактальные пены обобщаются аналогичным образом. При E=3 «густые» пены дают размерность D=ln(b3−1)/lnb, а «разреженные» — D=ln(6b2−12b+8)/lnb. Если пустоты велики, а размерность близка к 2, то пена похожа на чрезмерно ноздреватый эмментальский сыр; при малых пустотах и D~3 пена напоминает другой изысканный сыр — аппенцелльский.

РАСПРЕДЕЛЕНИЕ РАЗМЕРОВ ПУСТОТ

Тремы губок сливаются в одно целое, в то время как тремы ковров и пен представляют собой изолированные друг от друга пустоты, подобные паузам в канторовой пыли (см. главу 8). Распределение их линейного масштаба Λ подчиняется правилу

Nr(Λ>λ)∝Fλ−D,

где F — константа. Это правило нам хорошо известно еще с рассмотрения пустот в канторовой пыли, а также островов и кластеров в главе 13.

ПОНЯТИЕ О ФРАКТАЛЬНОЙ СЕТИ. РЕШЕТКИ

Решеткой в стандартной геометрии называется совокупность параллельных прямых, ограничивающих одинаковые квадраты, треугольники или другие регулярные фигуры. Этот же термин, судя по всему, применим и к правильным фракталам, любые две точки которых могут быть соединены одна с другой двумя различными путями, нигде более не пересекающимися. В случае неправильного — например, случайного — фрактала решетку я заменяю сетью.

При более внимательном сравнении стандартных и фрактальных решеток становятся заметны весьма значительные различия. Первое заключается в том, что стандартные решетки инвариантны при сдвигах, но не при масштабировании, тогда как для фрактальных решеток верно обратное. Второе различие: при уменьшении размера ячейки стандартной решетки решетка в пределе сходится в плоскость. Кроме того, некоторые стандартные решетки можно интерполировать, помещая дополнительные прямые посередине между уже существующими прямыми и продолжая этот процесс до бесконечности. В этом случае решетка также сходится в плоскость. Аналогичным образом, если возможна интерполяция стандартной пространственной решетки, то пределом ее становится все пространство. То есть предел стандартной решетки не является решеткой. В случае фракталов ситуация прямо противоположна: пределом приближенной фрактальной решетки является фрактальная же решетка.

Термин применим и к фрактальным пенам — их можно считать разветвленными фрактальными решетками.

ФРАКТАЛЬНЫЕ РАЗМЕРНОСТИ СЕЧЕНИЙ

Основное правило. Во многих случаях при изучении фракталов важно знать размерности линейных и плоских сечений. Основное наблюдение здесь (мы воспользовались им в главе 10 для того, чтобы показать, что размерность турбулентности D>2) касается сечения плоской фрактальной фигуры интервалом, «независимым от фрактала». Оказывается, если сечение непусто, то его размерность «почти наверняка» составляет величину D−1.

Соответствующее значение для пространственного случая D−2.

Исключения. К сожалению, этот результат весьма сложно проиллюстрировать, имея дело с неслучайными фракталами, обладающими осями симметрии. Интервалы, на которые мы первым делом обращаем внимание, параллельны этим осям и, как следствие, нетипичны, а почти любое простое сечение каким-либо другим интервалом принадлежит исключительному множеству, к которому общее правило не применимо.

Возьмем, например, ковер Серпинского, троичную губку Менгера и троичную пену. Значение D−1, которое почти наверняка должно оказаться размерностью сечения плоской фигуры отрезком, будет, соответственно, равно:

ln(8/3)/ln3

ln(20/9)/ln3 и

ln(26/9)/ln3.

Обозначим через х абсциссу интервала, параллельного оси у ковра Серпинского. Если число x, записанное в троичной системе счисления, оканчивается на бесконечную последовательность нулей и двоек, то сечения сами представляют собой интервалы, а значит D=1 — больше, чем мы ожидали. Если же х оканчивается на бесконечную последовательность единиц, то сечения являются пылевидными канторовыми множествами с размерностью D=ln2/ln3, которая слишком мала. А если x оканчивается периодической последовательностью периода M, включающей в себя pM единиц и (1−p)M нулей или двоек, то размерность сечений имеет вид D=p(ln2/ln3)+(1−p). Ожидаемое значение D получается лишь при p~0,29. < То же верно и в случае случайной последовательности цифр в троичной записи числа x. ► Таким образом, мы получаем три различных размерности — наибольшую, наименьшую и среднюю.

Очень похожие результаты получаются и в пространственном случае.

Что касается салфетки Серпинского, ее наиболее вероятная размерность D=ln(3/2)/ln2, однако значения размерности «естественных» сечений варьируются от 1 до 0. Например, если короткий интервал, проходящий через середину одной из сторон салфетки, достаточно близок к перпендикуляру, то его пересечением с салфеткой будет одна-единственная точка (размерность сечения D=0).

Разнообразие этих особых сечений отчасти объясняется регулярностью исходных фигур. С другой стороны, наиболее экономичное сечение (причем необязательно прямой линией) неизбежно является основой понятий топологической размерности и степени ветвления, к которым мы сейчас и переходим.

РАЗВЕТВЛЕННЫЕ ФРАКТАЛЫ КАК КРИВЫЕ И ПОВЕРХНОСТИ

Как мы уже отмечали, термин «кривая» используется в настоящем эссе как эквивалент фразы «связная фигура с топологической размерностью DT=1». Вообще говоря, математик сочтет такую формулировку не совсем удовлетворительной, точные же выражения для этого понятия весьма деликатны. К счастью, для того, чтобы объяснить, почему любая кривая Коха с инициатором [0, 1] заслуживает звания кривой, нам в главе 6 хватало одного простого соображения: как и сам интервал [0, 1], кривая Коха связна, однако становится несвязной при удалении любой принадлежащей ей точки кроме 0 и 1. А граница снежинки похожа в этом отношении на окружность — она связна, но становится несвязной, если удалить любые две ее точки.

Выражаясь более педантично (как нам теперь и подобает), топологическая размерность определяется рекурсивно. Для пустого множества DT=−1. Для любого другого множества S значение DT на единицу больше, чем наименьшая размерность DT разъединяющего множество S «сечения». Размерность конечных и канторовых пылевидных множеств DT=1−1=0, так как для их разъединения требуется удалить пустое множество. Следующие же связные множества становятся несвязными при удалении «сечения» с размерностью DT=0: окружность, интервал [0, 1], граница снежинки Коха, салфетка и ковер Серпинского, губки Менгера. (В трех последних случаях достаточно избежать особых сечений, включающих в себя интервалы.) Следовательно, размерность всех перечисленных множеств DT=1.

Исходя из тех же соображений, фрактальная пена представляет собой поверхность с размерностью DT=2.

Рассмотрим еще один вариант доказательства того, что для салфетки, всех ковров и всех губок с D<2 топологическая размерность DT=1. Поскольку DT есть целое число ≤D, из неравенства D<2 следует, что DT должна быть равна либо 0, либо 1. Но рассматриваемые множества являются связными, значит размерность DT не может быть меньше 1. Единственное решение: DT=1.

СТЕПЕНЬ ВЕТВЛЕНИЯ КРИВОЙ

Топологическая размерность и соответствующие понятия пыли, кривой и поверхности дают нам лишь классификацию первого уровня.

В самом деле, два конечных множества, содержащих соответственно M' и M'' точек, имеют одинаковую размерность DT=0, но различаются топологически. А канторова пыль отлична от любой конечной пыли.

Рассмотрим, как можно применить к кривым параллельное различие, основанное на количестве содержащихся в множестве точек (< его «мощности» ►), что приведет нас к топологическому понятию степени ветвления, определенному в начале двадцатых годов Паулем Урысоном и Карлом Менгером. Это понятие почти не упоминается в математической литературе (за исключением трудов самих первопроходцев), зато приобретает все большее значение в физике — любое чудовище проще изучать в прирученном виде, нежели в диком. Оно показывает также, что, рассматривая сначала салфетку, а лишь затем ковер, мы будем руководствоваться не только эстетическими соображениями или стремлением к завершенности.

В понятие степени ветвления входит сечение множества, содержащее наименьшее количество точек, которые следует удалить для разъединения множества S. Кроме того, оно включает в себя и окрестности всех точек P, принадлежащих множеству S.

Окружность. Для плавного перехода от стандартной геометрии к фрактальной начнем с того, что назовем множеством S окружность радиуса 1. Окружность B с центром в точке P пересекает S в R=2 точках, за исключением тех случаев, когда радиус B больше 2 — при этом R=0. Диск, ограниченный окружностью B, называется окрестностью точки P. Таким образом, любая точка P лежит в какой-либо произвольно малой окрестности, граница которой пересекает S в R=2 точках. Вот, собственно, и все: если B является границей некоторой общей окрестности точки P, не обязательно круглой, но «не слишком большой», то R равно, по меньшей мере, 2. Слова «не слишком большой» в предыдущем предложении могут, несомненно, внести путаницу, однако избежать их, к сожалению, не представляется возможным. Величина R=2 называется степенью ветвления окружности. Заметим, что для всех точек окружности эта величина неизменна.

Салфетка. Положим теперь, что множество S — это салфетка Серпинского, построенная с помощью трем. Здесь R уже не является одинаковым для всех точек P. Позвольте мне, воспользовавшись рассуждениями Серпинского, показать, что во всех точках множества, за исключением вершин инициатора, значение R может быть равным либо 2(Rmin) либо4(Rmax).

Значение R=4 относится к вершинам любого конечного приближения к S с помощью треугольников. Вершина для аппроксимации порядка h≥k является общей вершиной P для двух треугольников с длиной стороны 2 . Окружности с центром в точке P и радиусом 2−k (при h>k) пересекают множество S в 4 точках и ограничивают произвольно малые окрестности точки P. А если B ограничивает «достаточно малую» окрестность точки P (при том, что вершины инициатора лежат вне B), то можно показать, что B пересекает S, по меньшей мере, в 4 точках.

Значение R=3 характеризует любую точку множества S, являющуюся пределом бесконечной последовательности треугольников, каждый из которых содержится внутри предшествующего ему треугольника и имеет вершины, отличные от вершин своего предшественника. Окружности, описанные вокруг этих треугольников, пересекают множество S в 3 точках, ограничивая при этом произвольно малые окрестности точки P. В этом случае, если B ограничивает достаточно малую окрестность точки P (вершины инициатора здесь также должны лежать вне B), то можно показать, что B пересекает S, по меньшей мере, в 3 точках.

Ковры. Когда множество S является ковром Серпинского, мы получаем радикально иной результат. Пересечение границы любой достаточно малой окрестности и S представляет собой несчетно бесконечное множество точек, причем независимо от параметров N, r или D.

Замечание. В этой дихотомии конечного/бесконечного салфетка немногим отличается от стандартных кривых, в то время как ковры неотличимы от плоскости.

Однородность. Единственность. Обозначив через Rmin и Rmax наименьшее и наибольшее значения R, достижимые в точке, принадлежащей множеству S, Урысон доказывает, что Rmax≥2Rmin−2. Ветвление называется однородным, если выполняется равенство Rmax=Rmin, так бывает, когда R=2, как в простых замкнутых кривых, или когда R≡∞.

Для других решеток, где Rmax=2Rmin−2, я предлагаю термин квазиоднородные. Самый простой и широкоизвестный пример таких решеток — самоподобная салфетка Серпинского. Другие неслучайные примеры входят в собранную Урысоном коллекцию (см. [571]) и не являются самоподобными. Таким образом, условиям квазиоднородности и самоподобности одновременно удовлетворяет только одно известное множество — салфетка Серпинского. Можно ли строго подтвердить эту, судя по всему, единственность?

Стандартные решетки. Здесь степень ветвления варьируется от минимального значения 2 для всех точек решетки, за исключением узлов, до переменного конечного максимального значения, достигаемого в узлах решетки: 4 (квадратная решетка), 6 (треугольная или кубическая решетка) или 3 (шестиугольная решетка). Однако по мере уменьшения размера ячейки стандартной решетки любого типа она трансформируется из кривой в область плоскости, и степень ее ветвления R устремляется к бесконечности.

Последнее становится более очевидным, если заменить бесконечно малое на бесконечно большое в решетке с фиксированным размером ячеек. Для того, чтобы изолировать все увеличивающуюся область решетки, придется пересечь неограниченно большое количество точек.

Формальное определение. < См. [426] и [38], с. 442. ►

ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ ВЕТВЛЕНИЯ

Зададим себе привычный вопрос. Как бы ни занимали математиков фигуры Серпинского, Менгера и им подобные, не очевидно ли, что для человека, изучающего Природу, степень ветвления не может представлять никакого интереса? Ответ так же привычен — для нас с вами! — как и вопрос. Степень ветвления обретает значимость уже в «реальном мире» конечных аппроксимаций, получаемых при остановке ведущей к фракталу интерполяции при некотором положительном конечном внутреннем пороге ε.

В самом деле, если дано приближение салфетки Серпинского, составленное из заполненных треугольников с длиной стороны ε, то можно разъединить область, линейный масштаб которой превышает ε, простым удалением трех или четырех точек, каждая из которых принадлежит границе между двумя соседними пустотами. Это число (3 или 4) не изменяется при улучшении приближения. Следовательно, с точки зрения ветвления, все приближения салфетки можно считать кривыми.

Все ковры, напротив, обладают общим свойством: никакая пара пустот не имеет общей границы. Для разъединения конечного приближения такой фигуры, при рассмотрении которой мы игнорируем пустоты, меньшие ε, необходимо удалять целые интервалы. И количество этих интервалов возрастает по мере того, как ε→0. Уайберн [592] показал, что все фрактальные кривые, обладающие этим свойством, топологически идентичны (< гомеоморфны ►) и характеризуются тем, что никакая их часть не может быть отделена удалением одной точки.

С учетом предыдущих замечаний неудивительно, что конечность ветвления находит столь явные и четко очерченные области применения в тех случаях, когда фрактальная геометрия оказывается призвана подробно определить, в какой пропорции плоская фрактальная кривая сочетает в себе два своих стандартных предела: прямую и плоскость. Обобщая, можно сказать, что знать фрактальную размерность кривой отнюдь не достаточно. Например, при исследовании критических феноменов для моделей Изинга на фрактальной решетке авторами работы [165] было установлено, что наиболее важные результаты (< будь то при нулевой или при положительной температуре ►) непосредственно зависят от конечности величины R.

Вот и настало время дать объяснение, к которому мы ранее были не готовы. Причина, по которой магистраль кластера в критической бернуллиевой перколяции лучше моделируется салфеткой Серпинского, нежели ковром, проясняется следующим открытием Киркпатрика [265]. Даже в чрезвычайно больших решетках критическую магистраль можно разъединить удалением некоторого, по существу неизменного, малого количества связей (величины порядка 2). Даже принимая во внимание всевозможные отклонения, это открытие представляется мне весьма убедительным свидетельством того, что R<∞.

АЛЬТЕРНАТИВНАЯ ФОРМА ВЕТВЛЕНИЯ

Существуют два варианта снежинки Коха, которые достигают ветвления без образования петель. Первый — плоская кривая, инициатором которой является квадрат, а генератор выглядит следующим образом:

Как видно из рисунка, получаемая кривая ничуть не похожа на снежинку:

Другой пример — поверхность с нулевым объемом, бесконечной площадью и размерностью, равной ln6/ln2=2,58497. Инициатором служит правильный тетраэдр. К средней четверти каждой грани (т. е. к треугольнику, вершинами которого являются середины ограничивающих грань ребер) приставляется другой тетраэдр, линейные размеры которого уменьшены в два раза. Процедура повторяется с каждой гранью получающегося в результате правильного (асимметричного и невыпуклого) 24-гранника, а затем снова и снова до бесконечности. Начиная со второго этапа построения, добавляемые тетраэдры касаются друг друга гранями без самопересечений. В конце концов они заполняют всю поверхность инициатора. Назовем каждую четверть этой конструкции, выросшую на одной из граней инициатора, пирамидой Коха.

ТАЙНЫ ПИРАМИДЫ КОХА

Пирамида Коха воистину чудесна — если смотреть сверху, форма ее очень проста, однако в ней скрыто множество потаенных ходов и камер, потрясающих даже самое смелое воображение.

Если смотреть сверху, пирамида Коха — это тетраэдр, основанием которого служит равносторонний треугольник. Что касается трех остальных граней, то они представляют собой прямые равнобедренные треугольники, соединенные вершинами при прямых углах. Если приложить три пирамиды Коха к трем граням правильного тетраэдра, то получится простой куб.

А теперь поднимем нашу пирамиду вверх и стряхнем с нее песок пустыни. Рассматривая ее основание с некоторого расстояния, мы видим, что оно разделяется на четыре равных равносторонних треугольника. Однако на месте среднего треугольника находится отверстие, ведущее в «камеру первого порядка», которая имеет форму правильного тетраэдра, четвертая вершина которого совпадает с верхушкой пирамиды. Подойдя ближе и получив возможность разглядеть более мелкие детали, мы обнаруживаем, что и находящиеся в углах основания правильные треугольники, и верхние грани камеры первого порядка также не являются гладкими поверхностями. Их гладкость нарушается тетраэдральными камерами второго порядка. Аналогичным образом, при исследовании камер второго порядка, мы видим, что в середине каждой треугольной стены имеется треугольное же отверстие, ведущее в камеру третьего порядка. Чем глубже мы погружаемся в пирамиду, тем меньшие камеры открываются нашему взору, и конца им не видно.

Сумма объемов всех камер в точности равна объему всей пирамиды Коха. С другой стороны, если считать, что основания камер являются частью этих камер, а остальные три грани — нет, то окажется, что камеры не пересекаются ни в одной точке. Если бы строителям нашей пирамиды пришлось выдалбливать камеры в толще скалы, то им пришлось бы удалить всю породу, оставив лишь тонкую оболочку. Кривая, которой пирамида Коха опирается на плоскость, и «стены» камер представляют собой салфетки Серпинского.

СФЕРИЧЕСКИЕ ТРЕМЫ И РЕШЕТКИ

Авторы работы [313] невольно сделали значительный вклад во фрактальную геометрию, попытавшись заполнить RE шарами, радиус каждого из которых имеет вид ρk0rk, где r<1; число шаров радиуса ρk на единицу объема имеет вид nk=n0vk, где v — целое число вида v=(1−r)r−E, что накладывает жесткие ограничения на r. Таким образом, показатель распределения размеров пустот определяется следующим выражением:

D=lnv/ln(1/r)=E−ln(1−r)/lnr.

Сначала разместим большие сферы радиуса ρ1 в центрах ячеек решетки с шагом 1. Узлы решетки с шагом 2, лежащие вне больших сфер, оказываются достаточно многочисленными, чтобы послужить центрами для сфер меньшего радиуса (ρ2) и так далее. Такая конструкция подразумевает следующие верхние границы величины r:

при E=1,r≤1/3, при E=2,r≤1/10,

при E=3,r≤1/27, при E→∞,r→∞

Заполнение R3 непересекающимися шарами может занять меньшее время. В случае же одномерной линии максимальное значение r составляет 1/3, что соответствует значению r для троичной канторовой пыли! Существование канторовых пылевидных множеств с r>1/3 указывает на то, что одномерная упаковка может оставлять пустоты произвольно малой размерности. С другой стороны, более тесная упаковка подразумевает более сложную структуру.

АНОНС: ЛАКУНАРНОСТЬ

Даже после того, как мы добавим к размерностям DT и D степень ветвления R, фрактал остается во многих отношениях недостаточно определен. Особое значение имеет еще одно дополнительное свойство, которое я назвал лакунарностью. Пустоты в очень лакунарном фрактале имеют очень большой размер, и наоборот. Основные определения можно было бы привести и здесь, однако мне представляется более целесообразным отложить это до главы 34.

Рис. 205. СТРЕЛА СЕРПИНСКОГО (РАЗМЕРНОСТЬ ГРАНИЦЫ D ~1,5849)


В [522] Серпинский строит кривую, инициатором которой является интервал [0, 1], а генератор и второй терагон выглядят следующим образом:

Последующие этапы построения имеют вид:

О том, как будет выглядеть эта кривая на одном из поздних этапов построения, можно получить представление, взглянув на очертания «береговой линии» в верхней части рис. 205 (над самым большим черным тр еугольником).

Самокасания. Конечные приближения кривой не имеют точек самокасания (как в главе 6), однако предельная кривая содержит бесконечно много таких точек.

Стрелы, заполняющие плоскость. Стрела на рис. 205 (если положить ее набок, она будет больше похожа на тропическую рыбу) определяется как участок кривой Серпинского между двумя последовательными возвращениями в точку самокасания — в данном случае, в середину интервала [0, 1]. Такими стрелами можно заполнить плоскость; при этом соседние стрелы соединяются друг с другом в этакой безумной экстраполяции застежки Велькро. (Или, возвращаясь к предыдущей метафоре, плавники одной рыбы в точности помещаются между плавниками двух других рыб.) Кроме того, сплавив вместе четыре должным образом выбранных соседних стрелы, мы получим точно такую же стрелу, увеличенную вдвое.

Тремы салфетки Серпинского. Я называю кривую Серпинского салфеткой по альтернативному способу ее построения, который основан на вырезании «трем» — метод, широко используемый в главах 8 и 31- 35. Мы получаем салфетку Серпинского, имея в качестве инициатора, генератора, а также двух последующих этапов построения следующие замкнутые множества:

Этот трема-генератор содержит в себе вышеприведенный линейный генератор в качестве собственного подмножества.

Водораздел. Впервые я столкнулся со стрелой Серпинского — правда, тогда я еще не знал о Серпинском — при изучении формы одного водораздела [381].

Рис. 207. АСИММЕТРИЧНАЯ ФРАКТАЛЬНАЯ ПАУТИНА (РАЗМЕРНОСТЬ D=2)


Эта паутина получается рекурсивным построением из замкнутого тетраэдра (инициатора) и совокупности четырех меньших тетраэдров (служащих генератором).

Ее размерность D=2. Попробуем спроецировать ее вдоль линии, соединяющей середины любой из пар противоположных ребер. Проекцией тетраэдра-инициатора будет квадрат, который мы назовем исходным. Каждый тетраэдр второго поколения проецируется на подквадрат, длина стороны которого составляет 1/4 от длины стороны исходного квадрата, и т. д. Таким образом на исходный квадрат проецируется вся паутина целиком. Границы подквадратов перекрываются.

Рис. 208. КОВЕР СЕРПИНСКОГО (РАЗМЕРНОСТЬ D~1,8928) И ГУБКА МЕНГЕРА (РАЗМЕРНОСТЬ D~2,7268)


Ковер Серпинского. В [523] Серпинский строит кривую, инициатором которой является сплошной квадрат, а генератор и два следующих терагона представлены ниже:

Площадь такого ковра обращается в нуль, а общий периметр его пустот стремится к бесконечности.

Рис. 208. Губка Менгера. Принцип построения очевиден. Продолжая построение до бесконечности, мы получим некий остаток, называемый губкой Менгера. Я сожалею о том, что в своих предыдущих эссе ошибочно приписал ее авторство Серпинскому. (Рисунок воспроизводится по книге Леонарда М. Блюменталя и Карла Менгера «Геометрические этюды» с любезного разрешения ее издателей, компании W. Н. Freeman & Со. © 1970.) Пересечения губки с медианами или диагоналями исходного куба являются троичными канторовыми множествами.

Сливающиеся острова. Как ковер, так и салфетку Серпинского можно получить и другим способом — еще одним обобщением рекурсии Коха, допускающим самоперекрытия, которые, однако, учитываются только единожды.

Для получения салфетки инициатором следует взять правильный треугольник, а генератором — фигуру, изображенную слева на приведенном ниже рисунке. Для получения ковра в качестве инициатора возьмем квадрат, а генератором послужит фигура, изображенная справа.

Здесь мы снова встречаемся с двумя феноменами, знакомыми нам по главе 13: береговая линия каждого острова спрямляема, следовательно, размерность ее равна 1, размерность же салфетки или ковра выражает скорее степень фрагментации суши (т. е. степень ее разделенности на острова), нежели степень неправильности береговых линий островов.

В остальном результат совершенно нов: в главе 13 море представляет собой связное множество, что выглядит как должная топологическая интерпретация открытых морских пространств. Оно открыто и в смысле топологии множеств, т. е. его граница ему не принадлежит. Новизна, привнесенная настоящим построением, заключается в том, что коховы острова могут теперь асимптотически «сливаться» в некий сплошной сверхостров, однако континента из него не получается, а береговые линии образуют в сочетании решетку.

< С точки зрения топологии, всякий ковер Серпинского является плоской универсальной кривой, а губка Менгера представляет собой пространственную универсальную кривую. То есть (см. [38], с. 433 и 501) эти фигуры оказываются самыми сложными кривыми соответственно в плоскости и в пространстве любой более высокой размерности. ►

Рис. 210. РАСКОЛ В СНЕЖНЫХ ПАЛАТАХ (РАЗМЕРНОСТЬ D ~1,8687)


Давным-давно в далекой стране в прекрасных Снежных Палатах восседал Великий Правитель со своею свитой. Однако между его подданными произошел раскол, за ним последовала война, в которой ни одна из сторон не одержала верх. И тогда Мудрые Старейшины провели границу, разделившую Палаты надвое, дабы туда могли войти без опасения ступить на враждебную территорию и представители Севера, и представители Юга.

Загадки лабиринта. Кто контролирует Великую Палату и как можно войти в нее снаружи? Почему некоторые малые палаты оказываются несориентированы ни по какой стороне света? Подсказку можно найти на обезьяньем дереве на рис. 55.

V НЕМАСШТАБИРУЕМЫЕ ФРАКТАЛЫ

15 ПОВЕРХНОСТИ ПОЛОЖИТЕЛЬНОГО ОБЪЕМА. ЖИВАЯ ПЛОТЬ

Фрактальные кривые, поверхности и пылевидные множества, описываемые и в научных целях приручаемые в этой части, можно назвать масштабно-инвариантными только в асимптотическом или как-нибудь иначе ограниченном смысле.


Первая глава части посвящена поверхностям положительного (не обращающегося в нуль!) объема. Что за безумное сочетание противоречивых понятий! Неужели мы, наконец, добрались до математических чудовищ, лишенных-таки какой бы то ни было полезности для естествоиспытателя? Ответ, и на этот раз, решительно отрицательный. Некая парочка весьма известных математиков-теоретиков, полагая, что они старательно избегают всяческих связей с Природой, невольно подготовили для меня как раз тот инструмент, в котором я нуждался, чтобы (помимо всего прочего) описать геометрию … живой плоти.

КАНТОРОВЫ ПЫЛЕВИДНЫЕ МНОЖЕСТВА ПОЛОЖИТЕЛЬНОЙ МЕРЫ

В качестве предварительного шага освежим в памяти построение Кантором троичного множества C. Его нулевая длина (а если быть точным до конца, то нулевая линейная мера) следует из того факта, что длины трем (средних третей) составляют в сумме

1/3+2/32+...+2k/3k+1+...=1.

Однако то, что множество C является абсолютно несвязным (и, следовательно, его топологическая размерность DT=0), не зависит от длин трем. Это свойство основано на том фундаментальном факте, что на каждом этапе построения каждый полученный на предыдущем этапе интервал рассекается удалением тремы, центр которой приходится на середину этого интервала. Обозначим отношение длин тремы и ее «несущего» интервала через λk, тогда выражение для совокупной длины интервалов, оставшихся после K этапов построения, принимает вид 0K(1−λk). Эта длина уменьшается при K→∞ до некоторого предела, который обозначим через P. В оригинальной конструкции Кантора λk≡2/3, следовательно, P=0. Однако P>0 всегда, когда 0λk<∞. В этом случае остаточное множество C* имеет положительную длину 1−P. Это множество не самоподобно, следовательно, не характеризуется размерностью подобия, однако, исходя из определения Хаусдорфа – Безиковича (см. главу 5), мы можем заключить, что размерность D такого множества равна 1. Из неравенства D>DT следует, что множество C* фрактально. Так как ни D, ни DT не зависят от длин трем λk, значения этих размерностей дают весьма поверхностную характеристику множества C*.

Еще более явным выглядит построение на плоскости. Вырежем из единичного квадрата крест площади λ1, оставив четыре малых квадрата по углам. Затем вырежем из каждого малого квадрата крест относительной площади λ2. Этот каскад порождает пыль, топологическая размерность DT которой равна 0, а площадь выражается произведением 0(1−λk). Если площадь не обращается в нуль, D=2.

Аналогичным образом можно получить в E− мерном пространстве пыль положительного объема с размерностями DT=0 и D=E.

ПЛАВАЮЩАЯ ВЕЛИЧИНА lnN/ln(1/r)

Хотя канторовы пылевидные множества положительной меры площади или объема не имеют размерности подобия, представляется полезным записать равенство rk=(1−λk)/2 и рассмотреть формальные размерности, определяемые как Dk=lnN/ln(1/rk).

В своем медленном изменении размерность Dk воплощает идею об эффективной размерности, рассмотренную в главе 3 при описании спутанной в шар нити. На прямой размерность D=1 предельного множества C* представляет собой предел отношения ln2/ln(1/rk). Более того, заключение D=1 не требует непременной справедливости неравенства ∑λk<∞, а удовлетворяется выполнением более слабого условия λk→0. Как следствие, мы имеем три класса линейных канторовых пылевидных множеств: а) с размерностью 0<D<1 и нулевой длиной; б) с размерностью D=1 и нулевой длиной, и, наконец, в) с размерностью D=1 и положительной длиной.

Случай, подобный последнему (в), может произойти и с кривыми Коха. Для этого достаточно изменять генератор на каждом этапе построения и позволить его размерности D устремиться к 2. Возьмем, например, rk=k/2 и присвоим Nk (а значит и Dk) максимальное значение, о котором мы говорили в пояснении к рис. 83. Предельная кривая в этом случае обладает весьма примечательным сочетанием свойств: ее фрактальная размерность D=2 нестандартна для кривой, однако ее топологическая размерность (DT=0) и площадь, которая обращается в нуль, являются стандартными.

Та же комбинация свойств характерна и для броуновского движения (см. главу 25), только здесь она достигается при избежании двойных точек.

Формальная размерность может дрейфовать не только в сторону значения D=2, но и прочь от него. Например, k этапов построения заполняющего плоскость дерева могут завершиться этапами с размерностью D<2. Результат такого построения бывает полезен при моделировании определенных речных бассейнов, которые в масштабах, превышающих внутренний порог η, выглядят как заполняющие плоскость, но в областях меньшего масштаба орошают почву не столь эффективно. Значение η очень велико в пустынях и очень мало (вплоть до 0) во влажных джунглях. Эффективная размерность таких рек составит D=2 для масштабов, больших η, и D<2 для масштабов, меньших η.>

КРИВЫЕ ПОЛОЖИТЕЛЬНОЙ ПЛОЩАДИ

Так как наше интуитивное представление о пылевидных множествах весьма несовершенно, нас мало беспокоит пыль положительной длины или объема. А вот кривую, площадь которой отлична от нуля, проглотить уже значительно сложнее. Поэтому после того, как Лебег [294] и Осгуд [458] убедили всех в том, что глотать все равно придется, эти кривые сменили кривую Пеано на посту самого чудовищного чудовища. После описания соответствующего примера я покажу, что действительность не так страшна, как идея: поверхности положительного объема оказываются, в самом буквальном смысле, близки сердцу любого человека.

А идея заключается в обобщении построения со срединным смещением, приведенного на рис. 71. Мы оставляем неизменными бухты и полуострова, каждый из которых представляет собой треугольник, вдающийся в треугольник болота, причем середина основания полуострова совпадает с серединой основания болотного треугольника. Новизна состоит в том, что относительные ширины λk бухт и полуостровов больше не являются постоянными, но стремятся к нулю при увеличении k таким образом, что 0(1−λk)>0. При таком построении площадь болота не стремится к нулю и, следовательно, предельное болото имеет размерность D=2. С другой стороны, болото оказывается совершенно отличным от любого стандартного множества с размерностью 2. Оно не только не имеет внутренних точек, но и является кривой с DT=1, поскольку окрестность любой точки может быть отделена от остального множества удалением всего двух точек.

Идею приведенного выше построения мы позаимствовали у Осгуда [458], несколько упростив его причудливую манеру упрощения сложных надуманных конструкций. Однако не дóлжно судить о ценности научного открытия, исходя из причин его совершения.

ГЕОМЕТРИЯ АРТЕРИЙ И ВЕН

Позволяю себе процитировать Гарвея (1628 г., [201]): «Движение крови может быть названо круговым в том смысле, в каком Аристотель утверждает, что воздух и дождь воспроизводят круговое движение высших тел…. Подобно этому и в живом теле, благодаря движению крови… различные его части питает, лелеет и оживляет более теплая, совершенная, насыщенная, живая и питательная кровь, которая затем, после соприкосновения с упомянутыми частями, становится холодной, сгущенной и, так сказать, ослабленной».

Гарвей пытался донести до современников идею кровообращения, согласно которой почти в каждой точке тела можно найти на малом расстоянии друг от друга и артерию, и вену. (Загляните также и в «Венецианского купца» Шекспира.) В этой идее не нашлось места для капилляров, однако в первом приближении мы вполне можем потребовать, чтобы и артерия, и вена были расположены бесконечно близко от любой точки тела, - исключая, разумеется, точки, находящиеся внутри артерии (вены), которые не могут быть очень близко к вене (артерии).

Сформулируем это иначе (только в такой формулировке результат выглядит еще более странно!): каждая точка ткани, не относящейся к системе кровообращения, должна лежать на границе между двумя кровеносными системами.

Еще одно конструкторское ограничение заключается в том, что кровь нужно экономить. Отсюда полный объем артерий и вен должен составлять лишь малый процент от объема тела, оставляя бóльшую часть пространства тканям.

ЧУДОВИЩА ЛЕБЕГА – ОСГУДА ВНУТРИ НАС

С точки зрения евклидовой геометрии, наши критерии представляют собой изысканную аномалию. Искомая фигура должна быть топологически двумерной, так как она образует границу, общую для двух топологически трехмерных фигур, причем требуется, чтобы ее объем был одновременно не только пренебрежимо мал по сравнению с объемами фигур, которые она ограничивает, но и гораздо больше этих объемов!

Одно из достоинств фрактального подхода к анатомии заключается в демонстрации того, что вышеуказанные требования прекрасно сочетаются друг с другом. Всем требованиям, которые нам вздумалось наложить на конструкцию системы кровообращения, вполне отвечает пространственный вариант построения Осгуда, описанный в одном из предыдущих разделов.

Вены и артерии в нашей конструкции являются стандартными трехмерными областями, поскольку в них должны целиком умещаться сферы малого радиуса (кровяные шарики). С другой стороны, сосуды занимают очень небольшую долю от общего объема тела. Ткань – другое дело; в ней нет ни одного участка, сколь угодно малого, который не был бы пересечен и артерией, и веной. Ткань представляет собой фрактальную поверхность: ее топологическая размерность 2, а фрактальная размерность 3.

В таком виде вышеприведенные критерии теряют всю свою экстравагантность. И кому теперь интересно, что их появление связано с попыткой надуманного математического бегства от здравого смысла. Они оказались неизбежными и с точки зрения этого самого здравого смысла. Более того, фрактальные чудовища Лебега – Осгуда составляют самую сущность нашей плоти!

ОБ ИНТУИЦИИ И ЗДРАВОМ СМЫСЛЕ

Совместное расположение дыхательных путей и кровеносной системы в легком также представляет собой весьма интересную конструкцию, в которой общую границу имеют уже три множества – артерии, вены и бронхиолы. Первым примером такого множества мы обязаны Брауэру. Рассматривая конструкцию Брауэра с учетом приведенных выше соображений, мы не найдем абсолютно никаких противоречий со здравым смыслом. Однако для оценки ее в исторической перспективе нам следует еще раз обратиться к нашему красноречивому поборнику интуитивного знания и общепринятых воззрений, Гансу Хану.

«Мы интуитивно знаем, что три области могут граничить между собой только в отдельных точках… Мы не в состоянии интуитивно постичь построение Брауэра, хотя логический анализ требует от нас его принятия. В очередной раз [обнаруживается], что даже в простых и элементарных вопросах геометрии совершенно нельзя полагаться на здравый смысл. Невозможно использовать [его] в качестве отправной точки или фундамента математической дисциплины. Пространство геометрии представляет собой … целиком логическое построение…

[Однако если] мы привыкнем иметь дело с подобными логическими построениями, если они проникнут в школьную программу, если мы будем узнавать о них, так сказать, с младых ногтей, так же, как мы узнаем о трехмерной евклидовой геометрии – тогда, очевидно, никому и в голову не придет сказать, что такие геометрические построения противны здравому смыслу».

Настоящее эссе служит наглядной демонстрацией того, что Хан опять оказывается глубоко неправ. Для того, чтобы справиться с теми неприятностями, о которых он говорит, необходимо, на мой взгляд, научить тот здравый смысл, который есть у нас сейчас, воспринимать новое – нет необходимости отбрасывать «старый» здравый смысл и пытаться воспитать «новый». Хан ставит ошибочный диагноз и прописывает лекарство, которое загонит пациента в гроб.

Здравый смысл в геометрии никогда не отрицал того, что он нуждается в помощи логики, невзирая на ее странные и запутанные методы. С чего бы логике опять пытаться от него ускользнуть?

Словом, ни в коем случае нельзя полагаться на то, что типичный математик считает совместимым со здравым смыслом; никак невозможно позволять какому бы то ни было здравому смыслу руководить нами при построении той или иной модели; и вообще, математика слишком важна, чтобы можно было отдать ее на откуп фанатикам от логики.

16 ДЕРЕВЬЯ. СКЕЙЛИНГОВЫЕ ОСТАТКИ. НЕОДНОРОДНЫЕ ФРАКТАЛЫ

В настоящей главе обсуждается нитевидные фрактальные деревья и другие почти масштабно-инвариантные фракталы, т. е. масштабно-инвариантные за исключением пренебрежимо малого во фрактальном смысле остатка. Эти фракталы оказываются неоднородными в том смысле, что для разных частей таких множеств размерности D и/или/ DT принимают различные значения. Оглядываясь же назад, мы видим, что все рассмотренные до сих пор фракталы можно охарактеризовать как однородные.

ПОНЯТИЕ О МНОЖЕСТВЕ СКЕЙЛИНГОВЫХ ОСТАТКОВ

Стандартные интервалы. Полуоткрытый интервал ]0,1], включающий в себя правую концевую точку и не включающий левую, является масштабно-инвариантным, так как он состоит из N=2 уменьшенных копий себя ]0,1/2] и ]1/2,1]. А вот открытый интервал ]0,1[ нельзя считать масштабно-инвариантным, так как кроме N=2 своих копий меньшего масштаба ]0,½[и ]½,1[ он включает в себя и среднюю точку x=1/2. Я предлагаю назвать эту среднюю точку скейлинговым (или масштабным) остатком. При вычислении D - и во многих других случаях – ею можно пренебречь. Физик сказал бы, что она характеризуется меньшим физическим порядком величины, чем целое и части.

Приведенный пример может ввести нас в искушение рассматривать все остаточные члены как порожденные излишней педантичностью усложнения, никак не влияющие на результат масштабирования. Однако в аналогичных примерах, относящихся к фракталам, которые я называю неоднородными фракталами, остаток может приобрести неожиданно большую значимость. Неоднородный фрактал – это сумма (или разность) множеств с различной фрактальной и топологической размерностью. Ни одно из этих множеств нельзя полностью исключить из рассмотрения, даже если они пренебрежимо малы как во фрактальном, так и в топологическом смысле. И между ними часто возникают конфликты с весьма интересными и значительными последствиями.

Канторовы пылевидные множества и изолированные точки. Построим канторову пыль, разделив интервал [0,1] на b=4 части, и сохранив крайние [0,¼] и [¾,1]. Альтернативный способ – удаление интервалов ]¼,½[ и ]½,¾[ - дает ту же пыль и остаточную точку x=1/2. Эта изолированная точка не является фракталом, так как и DT, и D в этом случае равны 0.

При обобщении на пространство E канторова пыль имеет размерности DT=0 и D>0, а для нефрактального множества остатков верно равенство DT=D=E−1. То есть остаток вполне может превосходить пыль топологически и/или фрактально.

ФРАКТАЛЬНЫЕ ДЕРЕВЬЯ, ОСТАТОЧНЫЕ ЧЛЕНЫ КОТОРЫХ ПРЕДСТАВЛЯЮТ СОБОЙ ИНТЕРВАЛЫ

На рис. 223 представлены зонтичные деревья с бесконечно тонкими стволами. К жизни они совершенно не приспособлены, и в главе 17 мы постараемся несколько увеличить их адекватность в качестве моделей реальных растений. И все же даже эти «остовы» деревьев представляют большой интерес для многих областей математики. Топологу все они показались бы одинаковыми, так как, на его взгляд, любое дерево состоит из бесконечно упругих нитей, и наши деревья также можно растягивать, или сжимать до тех пор, пока они не совпадут друг с другом. Однако эти деревья все-таки различаются и сточки зрения здравого смысла, и как фракталы.

Концы ветвей. Дерево представляет собой сумму двух множеств (ветвей и концов ветвей), размерности которых уживаются друг с другом очень интересным способом. Более простой для изучения частью дерева является множество концов ветвей – фрактальная пыль, похожая на многие другие известные нам пылевидные множества. Она масштабно-инвариантна: N=2, а r лежит в интервале между 1/√2и 0. Следовательно, D варьируется от 2 до 0, хотя фигуры на рисунке имеют размерность D от 1 до 2. Угол между ветвями принимает при каждом разветвлении одно и то же значение θ; это значение может изменяться в довольно широких пределах, никак не влияя на r и D. То есть одна и та же размерность D может характеризовать весьма различные древесные формы.

Когда 1<D<2, деревья самопересекаются при θ<θкрит, следовательно, если мы хотим обойтись без самопересечений, то выбор доступных значений θ сужается. Деревья на рис. 223 удовлетворяют условию θ=θкрит, однако мы начнем с предположения, что θ=θкрит.

Деревья. На первый взгляд, деревья на рисунке кажутся самоподобными, поскольку каждая ветвь вместе с произрастающими из нее меньшими ветвями является уменьшенной копией целого. Однако на самом деле две ветви, выходящие из главного разветвления, не дают в сумме целого: необходимо прибавить сюда и остаток, т. е. ствол дерева. Даже с точки зрения здравого смысла, таким остатком никак нельзя пренебречь. Более того, люди, как правило, придают большее значение стволам и ветвям деревьев, нежели концам ветвей. Если верить интуиции, ветви «господствуют» над своими концами.

Кроме того, независимо от значения D, концы ветвей дерева без самопересечений образуют пыль с размерностью DT=0, а ветви (неважно, с включенными концами или нет) – кривую с размерностью DT=1. Следовательно, топологически ветви господствуют-таки над своими концами. В самом деле, чтобы отделить от множества точку P и ее окрестность, необходимо удалить либо одну (если P - конец ветви), либо две (если P принадлежит внутренней части ветви), либо три точки (если P - точка ветвления).

Перейдем к фрактальному аспекту. Размерность множества концов ветвей D, а размерность каждой ветви 1. Что касается целого, то оно, не будучи масштабно-инвариантным, все же характеризуется фрактальной размерностью, определяемой по формуле Хаусдорфа – Безиковича, причем эта размерность не может быть ни меньше D, ни меньше 1, а на деле оказывается равной большей из двух величин. Рассмотрим каждый из случаев отдельно.

Фрактальные деревья. Когда D>1, фрактальная размерность всего дерева равна D. Несмотря на то, что ветви доминируют в конструкции как с точки зрения здравого смысла, так и топологически, во фрактальном смысле ими можно пренебречь. Так как D>DT, дерево представляет собой фрактальное множество, в котором величина D служит мерой ветвления. Таким образом, нам открывается еще одна грань фрактальной размерности в добавление к ее способности выступать качестве меры иррегулярности и фрагментации. Когда мы перейдем в главе 17 к не нитевидным деревьям, мы обнаружим, что гладкая поверхность с достаточным количеством острых локализованных «выступов» может оказаться чем-то «бóльшим», чем стандартная поверхность.

Субфрактальные деревья. В случае 0<D<1 линейная мера (совокупная длина) всего дерева конечна и положительна, так что его фрактальная размерность неизбежно равна 1. Следовательно, D=DT, т. е. такое дерево не является фрактальным.

Тем не менее, если подобрать единицы измерения таким образом, чтобы длина ствола составила 1−2r, то ветви (рассматриваемые как открытые интервалы) можно будет разместить вдоль пустот линейной канторовой пыли C, которая занимает интервал [0,1] и характеризуется теми же значениями N=2 и r, что и множество концов ветвей. Аналогичным образом, на множестве C можно разместить и сами концы ветвей. Получается, что интервал [0,1] целиком заполняется отображениями точек нашего дерева. Не отображаются только те точки, на которых держатся ветви. Эти точки образуют счетное остаточное множество.

Вспомним о замечании, сделанном нами по поводу чертовой лестницы на рис. 125 – ее форма необычна, но фракталом она не является. Если важность этих форм будет возрастать и далее, им может понадобиться особое и тщательно выбранное название. Пока же остановимся на субфракталах.

В качестве последнего эксперимента заменим прямолинейные ветви фрактальными кривыми с размерностью D*>1. Когда D<D*, фрактальные свойства дерева определяются ветвями, а все дерево целиком представляет собой фрактал с размерностью D*. В случае же D>D* наше дерево будет фракталом с размерностью D.

НЕОДНОРОДНЫЕ ФРАКТАЛЫ

Думаю, настала пора вводить новое определение. Фрактал F называется однородным, если все множества, полученные в результате пересечения F с диском или шаром, центр которого принадлежит F, имеют одинаковую топологическую (DT) и фрактальную (D>DT) размерности.

Очевидно, что кривые Коха, канторова пыль, разветвленные кривые и т. д. являются однородными фракталами. А остовы деревьев с D>0 из предыдущей главы следует отнести к фракталам неоднородным.

Вообще говоря, деревья могут считаться фракталами только отчасти: пересечение дерева и достаточно малого диска, центр которого принадлежит ветви, не является фракталом, но состоит из одного или нескольких интервалов.

ФРАКТАЛЬНЫЕ КРОНЫ

До сих пор мы полагали, что деревья, изображенные на рис. 223, пусть едва-едва, но все же избегают самокасаний. На самом же деле, концы ветвей этих деревьев асимптотически касаются друг друга. В результате множество концов ветвей перестает быть пылью с DT=0 и становится кривой с DT=1 без малейшего изменения фрактальной размерности. Для описания этого нового класса фрактальных кривых я предлагаю термин расширенные фрактальные кроны. Заметим, что длина тени такой кроны возрастает с увеличением D.

Кривую, ограничивающую открытую область снаружи получающейся в результате фигуры, назовем просто «фрактальной кроной». Благодаря отсутствию «складок», присущих расширенной кроне, размерность этой кривой не дотягивает до D на величину, которая возрастает с увеличением D.

Поскольку для деревьев жизненно важен солнечный свет, ветви, заканчивающиеся в складках расширенной фрактальной кроны, скорее всего, засохнут. Садовник может либо позволить каким-то ветвям вырасти, а затем засохнуть из-за отсутствия света, либо составить более сложную программу, которая запретит расти именно этим ветвям. Я предпочел бы более простую программу.

Когда D<1, слияние пыли с размерностью D в кривую невозможно. Если попытаться добиться самокасания посредством уменьшения угла θ между ветвями, то цель будет достигнута лишь тогда, когда угол станет равным 0 и дерево стянется в интервал. Если же пойти другим путем и зафиксировать длину тени дерева, а самокасания добиваться посредством вытягивания ветвей вверх, то цель не будет достигнута никогда: в пределе из дерева получится комбинация линейной канторовой пыли C и свисающих из каждой точки C полупрямых.

ДЕРЕВЬЯ БЕЗ ОСТАТОЧНЫХ ЧЛЕНОВ

Многообразие фрактальных деревьев не сводится к тем формам, которые мы рассмотрели в предыдущих разделах. Вспомним, например, конструкцию, описанную на с. 202. А теперь возьмем в качестве кохова генератора крест, ветви которого имеют следующие длины: rв (верхняя), rн (нижняя), rб (боковые), причем выполняется равенство rВ2+rН2+2rб2<1. Каждая ветвь получившегося фрактального дерева, какой бы малой она ни была, в изобилии окружена подветвями. А если исключить корневую точку, то такие деревья масштабно-инвариантны без остатка.

ФИЗИКА ВЫСОКИХ ЭНЕРГИЙ: РЕАКТИВНЫЕ СТРУИ

Фейнман [149] пишет, что благодаря фрактальным деревьям он смог представить себе и смоделировать «струи», образующиеся при столкновениях частиц очень высоких энергий. Эту идею исследовал Дж. Венециано, о чем он сообщает в отчетах CERN.

Рис. 223. Фрактальные зонтичные деревья и фрактальные кроны


Каждое дерево на этом рисунке имеет бесконечно тонкий ствол и неизменный угол θ между ветвями. Размерность D варьируется между 1 и 2, причем для каждого D угол θ принимает наименьшее возможное без самокасаний значение.

При D, чуть большем 1 (вверху слева), результат похож на веник. При увеличении D ветви раскрываются, вследствие чего «крона» расширяется и образует складки, укрытые от солнечного света. При взгляде на такую конструкцию вспоминаются цветы некоторых разновидностей вида Brassica oleracea – таких, например, как цветная капуста (B. o. botrytis) и брокколи (B, o. italica). Интересно, насколько значительным может оказаться тот факт, что геометрические различия между цветной капустой и брокколи частично определяются фрактальной размерностью?

Фигура, получаемая при бóльших D (внизу слева), может напомнить французу о фортификационных сооружениях близ Вобана. Значения D=2 и θ=π дают дерево, заполняющее плоскость. При дальнейшем увеличении угла θ>π (внизу справа) приходится снова уменьшать размерность D, при этом всякое сходство с зонтиком пропадает, уступая место искривленному орнаменту, который странным образом ассоциируется с классическими древнеиндийскими скульптурами, изображающими танцующих людей.

На одной из наиболее известных иллюстраций в книге д ' Арси Томпсона «Рост и форма» [568] показано отображение друг на друга черепов рыб различных видов путем непрерывных и гладких преобразований в евклидовом духе. Преобразования, способные отобразить друг на друга приведенные на нашем рисунке деревья, вдохновлены тем же источником, но весьма отличны по духу.

17 ДЕРЕВЬЯ И ДИАМЕТРИЧЕСКИЙ ПОКАЗАТЕЛЬ

В этой главе мы займемся изучением геометрического строения «деревьев», стволы которых обладают толщиной. Такая структура характерна для легких, кровеносной системы, реальных деревьев, речных бассейнов и т. д.


Эти природные объекты всем нам очень хорошо известны; более того, никакой другой объект не иллюстрирует столь же доступно идею фигуры, содержащей большое количество элементов различного линейного масштаба. К сожалению, деревья оказываются более сложными конструкциями, чем это может представиться на первый взгляд. Мы не рассматривали их раньше из-за одного простого обстоятельства, упомянутого в предыдущей главе: деревья не могут быть самоподобными. Самое большее, на что можно рассчитывать – это то, что самоподобие сохраняется на уровне концов ветвей; таким допущением мы и будем руководствоваться в этой главе. В дополнение к фрактальной размерности D множества концов ветвей, деревья характеризуются еще одним параметром, который называется диаметрическим показателем и обозначается буквой Δ. Когда дерево самоподобно с остатком, как в главе 16, показатель Δ совпадает с размерностью D множества концов ветвей. В противном случае Δ и D оказываются независимыми друг от друга характеристиками, и пред нами предстает образчик феномена, называемого биологами «аллометрией». Нам встретятся случаи как с Δ=D, так и с Δ<D.

ДИАМЕТРИЧЕСКИЙ ПОКАЗАТЕЛЬ Δ

Леонардо да Винчи пишет в своих «Заметках» (заметка № 394): «Совокупная толщина всех ветвей дерева на любой высоте равна толщине ствола (ниже их)». Формальное выражение выглядит следующим образом: диаметры ветвей настоящего дерева до и после разветвления (d, d1 и d2)

удовлетворяют соотношению

dΔ=d1Δ+d2Δ,

где Δ=2. Смысл этого выражения таков: если принимать во внимание толщину ветвей, настоящие деревья не являются самоподобными деревьями с почти заполняющей пространство корой. В самом деле, самоподобие требует выполнения равенства Δ=D, а размерность D почти заполняющей пространство структуры должна быть близка к E=3.

Иными словами, во всех случаях, когда выполняется вышеприведенное соотношение, величина Δ представляет собой новый параметр в дополнение к размерности D; мы будем называть этот новый параметр диаметрическим показателем. Его рассматривали очень многие люди – в большинстве случаев независимо друг от друга – в этом можно убедиться, взглянув хотя бы на список литературы в [568]. В этой главе показано, что для бронхов Δ~3. Показатель Δ дерева артерий равен приблизительно 2, 7, а для настоящих деревьев он близок к значению, указанному Леонардо, Δ=2. Ширина рек также регулируется показателем Δ=2. Кроме того, мы рассмотрим здесь некоторые физические, физиологические и геометрические аспекты величины Δ.

Параразмерность. Во «Фракталах» 1977 г. я называл показатель Δ паразмерностью (от греческого παρα «рядом, около»), но я больше не настаиваю на употреблении этого термина. Функции величины Δ вообще весьма туманны: в одних случаях она является размерностью, в других – нет. Аналогичное поведение демонстрирует показатель в [29]; см. также главу 39.

ДЕРЕВО БРОНХОВ В ЛЕГКИХ

Первый пример: деление воздушных трубок в легких человека во всех практических отношениях самоподобно, причем Δ=D, а D~E=3.

Внутреннюю структуру легкого вряд ли можно назвать хорошо знакомой широкому кругу людей, поэтому было бы поучительно вставить в этом месте фотографию реального легкого (такие фотографии можно найти, например, в [585] или в [84]), однако я установил для себя правило ограничиться в данном эссе моделями (и это, пожалуй, единственный случай, когда я сожалею об этом своем решении) .Значит, придется обойтись словесным описанием. Представьте себе, что мы заполнили все бронхи и бронхиолы легкого жидкой пластмассой, а после того, как пластмасса затвердела, удалили ткани. В результате мы получим чрезвычайно разветвленное дерево, которое заполняет легкое с такой густотой, однородностью и непроницаемостью для взгляда, какой не достигается ни одно настоящее дерево. Между двумя первыми разветвлениями, которые нас пока не касаются, и тремя последними, ведущими к альвеолам (о которых мы говорили в главе 12), имеется еще пятнадцать последовательных разветвлений, происходящих с поразительной правильностью.

По данным Вайбеля [585], отрезки бронхов в первом приближении подобны друг другу, и Δ~3. Воздушный поток представляет собой конкретную величину, разделяющуюся между разветвляющимися бронхами, и поскольку воздушный поток в трубе равен площади сечения трубы, умноженной на скорость движения воздуха, получается, что скорость изменяется пропорционально dΔ−2: при вхождении в более тонкие бронхи воздух замедляется.

Строгое равенство Δ=3 весьма важно. Первая интерпретация основана на рассуждениях Мюррея [439], следующим образом представленных в [568] (с. 954 в издании 1942 г. или 129 в издании 1961 г.): «Рост площади поверхности бронхов вскоре приводит к значительному увеличению трения и уменьшению скорости проходящего по ним газа; следовательно, ветви должны быть более вместительными, чем может показаться на первый взгляд . Вопрос заключается уже не во вместительности, а в сопротивлении бронхов; а ответ в общих чертах таков: условием наименьшего возможного сопротивления во всей системе целиком является неизменность отношения сопротивления к поперечному сечению на всех участках системы, как до, так и после разветвления. Суммарное поперечное сечение отходящих от ствола ветвей должно быть, таким образом, больше, чем сечение самого ствола, в соответствии с возрастающим сопротивлением. Приблизительный вывод, хорошо известный людям, изучающим гидродинамику [современный подход излагается в [224] и [606]], состоит в том, что сопротивление минимально, и система работает в оптимальном режиме» тогда, когда коэффициент ветвления по всей системе равен 21/3~1,26.

Следовательно, значение Δ=3 является наилучшим из всех значений, каких можно достичь как целенаправленным конструированием, так и селективной эволюцией. Разумеется, критерий оптимальности по Мюррею исключительно локален, и конструктор никаким способом не сможет заранее узнать, можно ли будет оптимально соединить локально оптимальные элементы.

ЗАПОЛНЕНИЕ БРОНХАМИ ТРЕХМЕРНОГО ПРОСТРАНСТВА

Я предлагаю в качестве альтернативы совершенно отличные от предыдущих фрактальные соображения для объяснения Δ=3; они основаны на не зависящих от нашей воли геометрических ограничениях на процесс внутриутробного роста легких и на их окончательную форму. Очевидное преимущество такого подхода состоит в том, что он не требует введения в генетический код коэффициента ветвления 21/Δ~21/3 (на чем, по всей видимости, настаивает подход Мюррея).

Мы будем опираться на тот фундаментальный факт, что внутриутробный рост легкого начинается с почки, из которой вырастает трубка, на которой, в свою очередь, образуются две новые почки, каждая из которых ведет себя вышеописанным образом. Помимо всего прочего, такой рост самоподобен (а ствол легкого образует остаток!). Для того чтобы объяснить самоподобную структуру легкого, нет никакой необходимости доказывать, что она лучше всех остальных, нужно лишь показать, что она проще: представьте, насколько короче становится программа, управляющая ростом чего бы то ни было, если каждый последующий этап повторяет предыдущий в уменьшенном масштабе, или даже в том же масштабе, но после того, как результат предыдущего этапа дорастет до определенного размера. Если ситуация именно такова, то результат роста полностью определяется отношением поперечника ветвей к их длине и диаметрическим показателем. Кроме того, необходимо еще правило, указывающее, когда следует остановить рост.

Далее, в зависимости от значения Δ (величину отношения поперечника ветвей к их длине будем полагать постоянной), процесс роста, регулируемый вышеописанными правилами, приводит к одному из следующих трех результатов: а) после некоторого конечного числа этапов ветви заполняют весь доступный для роста объем; б) ветвям удается заполнить только некоторую часть доступного пространства; в) доступное для роста пространство в точности соответствует необходимому для данного процесса. Когда мы хотим получить в пределе заполняющую пространство структуру, нет необходимости встраивать в программу роста какие-либо подробные инструкции, поскольку конкуренция за свободное пространство почти не оставляет места для неопределенности. Двумерная реализация такого процесса представлена на рис. 236 и 237 , где мы можем видеть, что по мере уменьшения отношения поперечника ветвей к их длине до нуля, коэффициент ветвления заполняющей плоскость кривой стремится к 21/2, что дает Δ=E=2. Аналогичным образом коэффициент ветвления заполняющей пространство кривой, соответствующий бесконечно тонким ветвям, равен 21/3, что дает Δ=E=3.

Так как показатель Δ=3 соответствует предельному случаю бесконечно тонких трубок, его нельзя реализовать в действительности. А жаль, потому что «кора» дерева, построенного из бесконечно тонких разветвлений, продолжающихся до нуля, совершенно заполняет пространство. Этому последнему свойству мы могли бы дать телеологическую интерпретацию ничуть не хуже интерпретации Мюррея: такая структура наилучшим образом отвечает целям химического обмена между воздухом и кровью, поскольку предоставляет для этого обмена наибольшую поверхность.

Однако реальные бронхи не являются бесконечно тонкими, поэтому мы, в лучшем случае, можем рассчитывать лишь на значение показателей D и Δ, чуть меньшее 3, что вполне согласуется с опытными данными. Это значение подразумевает одинаковую степень несовершенства во всех точках ветвления – однако такой результат может быть получен и как побочное следствие самоподобия с остатком и не нуждается в особом рассмотрении.

Размерность. Ветви нашего дерева образуют стандартное множество: его размерность и в топологическом, и во фрактальном смысле равна E. Если оболочка каждой ветви является гладкой, то размерность всей оболочки равна показателю Δ.

АЛЬВЕОЛЫ – ВНУТРЕННИЙ ПОРОГ

Как обычно, процесс интерпретации не достигает бесконечно тонких бронхов, прерываясь при некотором пороге. Это происходит после пятнадцатого разветвления, а сам порог имеет ступенчатую структуру, которую я нахожу геометрически безупречной.

Основное замечание таково: хотя бесконечное самоподобное разветвление заполнило бы в конце концов все доступное пространство, процесс идет достаточно медленно, так что после первых пятнадцати этапов разветвления оказывается заполненной только малая часть объема легкого. Для того чтобы заполнить оставшееся пространство за малое число этапов, следует сделать трубы значительно толще, чем предполагает самоподобная экстраполяция. В самом деле, из слов Вайбеля ([585], с. 123 – 124) можно заключить, что на этапах после пятнадцатого диаметр трубок больше не уменьшается (т. е. показатель Δ перестает быть определенным). Длина трубок также становится больше, чем можно было ожидать, исходя из соображений подобия, причем предельный коэффициент равен 2. На рис. 237 видно, что самоподобные ветви прорастают примерно на половину ближайшего доступного пустого пространства и, следовательно, коэффициент 2 выглядит в высшей степени логично. Кроме того, последнее обстоятельство еще раз показывает, что программа роста легких обусловлена исключительно свойствами пространства и не нуждается в каком-либо дополнительном кодировании.

СНОВА О ГЕОМЕТРИИ КРОВЕНОСНЫХ СОСУДОВ

Вернемся к кульминационному моменту главы 15, где я заявил, что фрактальные чудовища Лебега – Осгуда составляют самую сущность нашей плоти. Допустим, что область ветвления A (артерии) занимает примерно 3% объема области B(тело), и что область A подходит бесконечно близко к каждой точке области B. Я утверждаю, что толщина ветвей области A должна уменьшаться быстрее, чем это происходит в самоподобных деревьях. Теперь, когда мы установили, что в некоторых случаях скорость уменьшения толщины характеризуется показателем Δ, мы вполне можем поинтересоваться, определен ли этот показатель для артерий.

Представьте себе, он и в самом деле определен в широком поддиапазоне от 8-го до 30-го разветвления, которые происходят между сердцем и капиллярами; более того, об этом факте известно уже почти столетие. Р. Тома [567], а затем Р. Гроут [178] подвели итоги своих экспериментальных исследований, и пришли к значению Δ=2,7. Их оценка была исчерпывающим образом подтверждена Сувой и Такахаси [546].

НАСТОЯЩИЕ ДЕРЕВЬЯ

Налюбовавшись объектами, к которым термин дерево применим только фигурально, мы возвращаемся к тем деревьям, которые изучает ботаника. «Нормальными» в данном случае представляются значения D=3 и Δ=2, обусловленные аналитическими соображениями. Разумеется, они вряд ли универсальны: при столь поразительном разнообразии ботанических форм наверняка найдутся отклонения, подчас даже более интересные, чем «норма». Равенство Δ=2 имеет любопытное следствие: если поставить рядом почти самоподобное дерево бронхов и дерево-растение, то ветви последнего покажутся чрезвычайно редкими. Сквозь точную модель легкого ничего нельзя разглядеть, тогда, как лишенная листвы крона дерева свободно просматривается во всех направлениях.

Причина того, что D и Δ принимают целочисленные значения, соответствующие евклидовым размерностям объемных тел и поверхностей, заключается, по мнению д' Арси Томпсона, в том, что «рост дерева управляется простыми физическими законами, которые и определяют величину относительных изменений в объеме и площади». Более конкретное объяснение находим в работе [191]: «Задачу об энергетическом обмене в дереве можно упростить, представив дерево как систему, в которой необходимо оросить наибольшую возможную площадь при наименьшем производимом объеме, обеспечив одновременный отвод поглощенной энергии». Поскольку объемы и площади несоизмеримы между собой в рамках евклидовой геометрии, геометрическая задача об архитектуре деревьев является, по сути, фрактальной. Фрактальный характер этой задачи становится еще более очевидным в тех случаях, когда ни D, ни Δ не являются целыми числами.

ЗНАЧЕНИЯ D И Δ НАСТОЯЩИХ ДЕРЕВЬЕВ

Значение D=3. Читателю хорошо известно, что наибольшая возможная площадь поверхности листьев дерева может быть достигнута в том случае, если они образуют поверхность, заполняющую пространство. В качестве приближенной модели можно взять куст, листья или иголки которого располагаются очень близко к любой точке внутри определенного ограниченного объема (за исключением, пожалуй, мертвого остова, который нам не виден). Для пропускания же внутрь солнечного света и воздуха вполне достаточно очень небольшой разницы 3−D.

Зонтики. Тем не менее, различные ограничения, налагаемые на архитектуру дерева, могут помешать реализации равенства D=3. Единственной стандартной альтернативой является стандартная же поверхность с размерностью D=2: например, поверхность сферического «зонтика», скрывающая под собой сердцевину, состоящую из ветвей без листьев. Вот почему Хорн [223], ограничивающийся стандартной геометрией, допускает как D=3, так и D=2. Как бы то ни было, я не вижу явных преимуществ в структуре с D=2; более того, чтобы концы ветвей образовали в итоге сферический зонтик, рост этих самых ветвей должен следовать весьма причудливым правилам.

С другой стороны, взяв на вооружение фрактальную геометрию, «зодчий деревьев» получает гораздо бóльшую творческую свободу. Во-первых, «многократно зубчатые» поверхности крон многих больших деревьев можно представить в виде масштабно-инвариантных фракталов с размерностью D между 2 и 3, причем разным значениям D будут соответствовать различные формы. На ум снова приходят цветная капуста и брокколи, но о них мы поговорим чуть позже, так как они представляют собой несколько иной случай. Можно вспомнить и о ползучих растениях, скудный лиственный покров которых образует поверхность с размерностью меньше 2 (а еще подумайте о том, что деревья бонсаи, которым так старательно придается «гармоничная» форма, также фрактальны, D<3).

Значение Δ=2. Правило Леонардо да Винчи, процитированное в начале этой главы, не годится для легких (Δ=3) и артерий (Δ=2,7), однако анатомия растений отличается от анатомии человека. Значение Δ=2 основывается на представлении о дереве как о совокупности неветвящихся труб фиксированного диаметра, соединяющих корни с листьями и занимающих неизменную долю поперечного сечения каждой ветви. Циммерман говорит, что японцы называют такое представление «трубчатой моделью».

Измерение Δ. Эмпирические свидетельства оказываются на удивление скудными и косвенными. Мюррей ([439], процитировано также в [568]), установил опытным путем, что вес ветви пропорционален ее диаметру, возведенному в степень M, где M~2,5, хотя я бы сказал, что обнаруженное им M было несколько больше. Он утверждает также, что M=Δ, однако мой анализ дает иное соотношение: M=2+Δ/D. При D=3 значение Леонардо Δ=2 соответствовало бы M~2,66, тогда как M~2,5 дает всего лишь Δ=1,5. Некоторое время назад профессор Макмагон любезно передал мне данные относительно трех «деревьев Макмагона», использованные при написании статьи [423], и я, таким образом, получил возможность лично проанализировать эти данные. Обозначим d1/d через x, а d2/d через y и отыщем такой показатель Δ, чтобы значения X=xΔ и Y=yΔ принадлежали прямой X+Y=1. К сожалению, разброс опытных данных чрезвычайно велик при любом Δ, и оценка величины Δ с неизбежностью оказывается недостоверной. Тем не менее, этот результат не опровергает значения Δ=2, лишь предполагает чуть меньшее Δ. В настоящий момент мы, пожалуй, можем благополучно заключить, что показатель Δ=2 является достаточно разумным приближением, не забывая о том, что древесная архитектура придерживается консервативных принципов, поэтому дочерние ветви оказываются несколько тоньше, чем это, строго говоря, необходимо.

Следствия равенств D=3 и Δ=2. Следствие первое: площадь листьев на ветви пропорциональна как занимаемому ветвью объему, так и поперечному сечению ветви. Этот вывод был сделан Хубером в 1928 г. и, действительно, подтверждается эмпирически.

Следствие второе: отношение квадрата высоты дерева к кубу диаметра ствола постоянно для любого вида деревьев и равно отношению куба линейной меры объема впитываемой ветвью жидкости к квадрату диаметра ветви. Можно также ожидать, что у деревьев разных видов величина этого отношения различается незначительно. Заметим, что сила, прилагаемая ветром к лишенному листьев дереву (или к дереву с листьями) приблизительно пропорциональна площади поверхности ветвей (или, соответственно, ветвей и листьев), а также пропорциональна кубу высоты дерева в данной модели. Сопротивление же ствола ветру пропорционально квадрату его диаметра. Следовательно, можно предположить, что отношение этих величин представляет собой коэффициент прочности дерева.

В зонтичном дереве с Δ=2 и D=2 отношение квадрата высоты дерева к кубу диаметра его ствола постоянно, равно как постоянно и более общее отношение (высота дерева)D/(диаметр ствола)Δ.

Отступление о костях задних ног. Отношение между высотой и диаметром, характеризующее настоящие деревья с D=3 и Δ=2, справедливо также и для скелетов животных, только буквой d здесь обозначается диаметр главной опорной кости.

УПРУГИЙ СКЕЙЛИНГ ПО ГРИНХИЛЛУ

Легочные и сосудистые деревья поддерживаются снаружи; большинство растений поддерживают себя сами. Гринхилл (цитирую по [568], издание 1961 г.) вводит на этом этапе понятие упругости (в противоположность геометрическому подобию). Идея статического упругого подобия заключается в том, что общая высота дерева не должна превышать некоторого фиксированного процента от критической высоты прогиба под действием собственного веса однородного цилиндра с таким же диаметром основания. Это условие дает в точности те же результаты, что и фракталы с D=3 и Δ=2. То есть «трубчатое» дерево с заполняющими пространство листьями прогибаться не будет.

Макмагон и Кронауэр [423] развили идею Гринхилла, введя понятие динамического упругого подобия, и получили все тот же результат.

РАСТЕНИЯ С D=Δ<3

Ствол некоторых растений служит не только в качестве опоры для веса и трубы для перекачки соков, но и в качестве хранилища для питательных веществ. В таких случаях – и даже когда сосудистая система растения соответствует «трубчатой модели» - показатель Δ не обязательно должен быть равен 2.

На рис. 235 изображено дерево, концы веток которого образуют нестандартный «зонтик» с размерностью D<3 и Δ=D (на рисунке, разумеется, представлен плоский вариант, соответствующие показатели раны D−1 и Δ−1). Хорошо видно, что геометрическая цветная капуста имеет характерные пустые включения – совсем как настоящая цветная капуста, выросшая на грядке. Простое совпадение? Природе нет нужды загромождать генетический код характеристиками, предопределяемыми геометрией.

Рис. 235. Плоские фрактальные модели цветов


Возьмем любое из зонтичных деревьев на рис. 223 с θ<π и заменим каждый прямолинейный отрезок равнобедренным треугольником, в котором указанный отрезок займет место одной из сторон, при этом углы у концов отрезков будут равны θ/2 (корневой конец) и π−θ. Поскольку угол θ имеет наименьшее, позволяющее избежать самопересечений дерева, значение, наши утолщенные треугольные стебли также не пересекаются, но заполняют внутреннюю область «зонтика». Чтобы сделать рисунки более наглядными, треугольники на одном из них были слегка подрезаны с одной стороны.

Заметим, что ветви быстро истончаются по мере того, как значение размерности D приближается к 1 или к 2 (в пространственной кривой, соответственно, к 2 или к 3). Соответствуют ли наблюдаемые в действительности значения D наибольшей возможной толщине ветвей?

Рис. 236 и 237. Заполняющие пространство рекурсивные бронхи


«Поддеревья», построенные из двух первых ветвей, подобны целому дереву, но каждое со своим коэффициентом подобия (обозначим их через r1 и r2). Все дерево самоподобным не является, так как наряду с поддеревьями оно включает в себя и ствол. С другой стороны, множество асимптотических концов ветвей самоподобно. Согласно пояснению к рис. 87 и 88, размерностью подобия называется размерность D, удовлетворяющая равенству r1D+r2D=1. В верхней фигуре на рис. 237 концы ветвей почти заполняют плоскость, и значение разности 2−D мало; в нижней фигуре D значительно меньше 2.

Кстати, при постоянном отношении диаметра к длине коразмерность 3−D соответствующей пространственной структуры оказывается меньше, чем коразмерность 2−D ее плоского варианта.

Рис. 236. Эта сложная фигура представляет собой результат кохова построения дерева, в котором на каждом этапе генератор изменяется так, чтобы отношение толщины к длине постепенно уменьшалось до 0. В левой части рисунка это отношение уменьшается быстрее, чем в правой. Как следствие, множество концов ветвей перестает быть самоподобным, однако все же достигает размерности D=2. Вот вам еще один способ достижения цели, поставленной в главе 15.

Рис. 237. При рекурсии Коха все прямолинейные интервалы любого конечного приближения порождают в следующем приближении ломаные, состоящие из более коротких отрезков. Во многих случаях бывает полезно обобщить эту процедуру, позволив определенным интервалам оставаться «бесплодными», т. е. неизменными на последующих этапах построения.

В данном случае такая обобщенная процедура использована для выращивания «дерева». Начинаем со ствола с бесплодными стенками и плодоносной «почкой» на конце. Почка порождает две «ветви», в которых плодоносными являются опять только «почки» на концах. И так далее до бесконечности. Для того чтобы дерево заполнило без пустот и самопересечений приблизительно прямоугольную область плоскости, рост его намеренно асимметричен. Однако асимптотических самокасаний мы избегать не стремились; и в самом деле, всякая точка, принадлежащая линии «коры», может быть получена как предел окончания какой-либо ветви.

ЕЩЕ О ГЕОМЕТРИИ МОЗГА

Обсуждая в главе 12 поверхность мозга, мы не принимали во внимание сеть аксонов, соединяющих различные его части. В случае мозжечка аксоны соединяют его поверхность с внешним веществом, и мы получаем в результате поверхность серого вещества, которая обволакивает дерево, состоящее из белого вещества. Я пересмотрел рассуждения главы 12 с учетом этого дерева и нашел, что полученные при этом поправочные члены для соотношения между площадью и объемом позволяют достичь лучшего согласия с экспериментальными данными. Однако это слишком длинная история, и вряд ли стоит пересказывать ее здесь.

Ветвление нейронов. Клетки Пуркинье в мозжечке млекопитающего имеют почти плоскую форму, а их дендриты образуют заполняющий плоскость лабиринт. По мере перехода от млекопитающего к голубям, крокодилам, лягушкам и рыбам плотность заполнения уменьшается [314]. Было бы замечательно, если бы это уменьшение соответствовало уменьшению размерности D; однако это не так, и предположение о фрактальной природе нейронов пока остается лишь предположением.

Закон Ролла. У. Ролл [486] отмечает, что нейронные деревья с постоянным значением dΔ, где Δ=1,5, электрически эквивалентны цилиндрам и, следовательно, весьма удобны для изучения. За подробностями рекомендую обратиться к [238].

КАКОВА ШИРИНА РЕКИ МИССУРИ?

Вернемся к рекам. Несмотря на концептуальную значимость моей «пеанианской» модели (см. главу 7), она может рассматриваться лишь как первое приближение. Эта модель, в частности, предполагает, что ширина реки обращается в нуль, тогда как реальные реки всегда имеют положительную ширину.

Необходимо найти ответ на очень важный эмпирический вопрос – сохраняется ли неизменным диаметрический показатель Δ на протяжении всех разветвлений реки? Если показатель Δ определен, возникает другой вопрос: положительна разность 2−Δ или равна нулю? Я не знаю прямого способа ответить на эти вопросы, однако известно, что объем стока речной воды (Q) остается при разветвлениях постоянным, следовательно, вполне может заменить величину dΔ. Мэддок (см. [297]) обнаружил, что d~Q1/2, отсюда Δ=2. Кроме того, глубина реки пропорциональна Q0,4, а скорость течения пропорциональна Q0,1. И сумма показателей не обманывает наших ожиданий: 0,5+0,4+0,1=1.

Еще в 30-е г. Дж. Лейси заметил, что равенство Δ=2 верно и для системы устойчивых ирригационных каналов в Индии, которая ставит перед специалистами по гидравлике вполне определенные задачи. Значит, можно надеяться на появление какого-нибудь гидромеханического объяснения, которое станет для рек тем же, чем стало объяснение Мюррея для легких.

Равенство Δ=2 имеет еще одно интересное следствие: если изобразить реки на карте в виде лент, правильно передав их относительную ширину, то, исходя из формы рек, угадать масштаб карты невозможно. (Угадать масштаб невозможно и на карте речных излучин, но это уже совсем другая история.)

Те, кто полагает, будто Леонардо знал обо всем на свете, несомненно, увидят показатель Δ=2 в продолжение цитаты, которая открывала эту главу: «Совокупная ширина всех ветвей (потока) воды на любой стадии его течения равна ширине основного потока (при условии, что скорости течения всех потоков одинаковы)».

VI САМООТРАЖАЮЩИЕСЯ ФРАКТАЛЫ

18 САМОИНВЕРСНЫЕ ФРАКТАЛЫ, АПОЛЛОНИЕВЫ СЕТИ И МЫЛО

Большая часть настоящего эссе посвящена фракталам, которые либо полностью инвариантны при преобразованиях подобия, либо, по меньшей мере, «почти» инвариантны. В результате у читателя может сложиться впечатление, что понятие фрактала неразрывно связано с самоподобием. Это решительно не так, однако поскольку мы только начинаем знакомиться с фрактальной геометрией, мы должны, прежде всего, рассмотреть своего рода фрактальные аналоги прямых линий евклидовой геометрии… мы можем называть их «линейными фракталами».


В главах 18 и 19 мы сделаем следующий шаг. В них вкратце описываются свойства фракталов, которые представляют собой соответственно наименьшие множества, инвариантные при геометрической инверсии, и границы наибольших ограниченных множеств, инвариантных при возведении в квадрат.

Оба этих семейства фундаментально отличаются от самоподобных фракталов. При должным образом выбранных преобразованиях масштабируемые фракталы остаются инвариантными, однако для их построения необходимо указать форму генератора и установить некоторые другие правила. С другой стороны, одного того, что фрактал «генерируется» каким-либо нелинейным преобразованием, часто бывает достаточно для определения, т. е. генерации, его формы. Кроме того, многие нелинейные фракталы ограничены, т. е. имеют заранее заданный конечный внешний порог Ω<∞. Те, кого по каким-либо причинам не устраивала неограниченность Ω, будут, несомненно, обрадованы этим обстоятельством.

Первые самоинверсные фракталы были представлены на суд публики в 80-х гг. XIX в. Анри Пуанкаре и Феликсом Клейном вскоре после того, как Вейерштрасс построил непрерывную, но не дифференцируемую функцию – примерно в одно время с множествами Кантора и задолго до кривых Пеано и Коха и их масштабно-инвариантных родственников. Ирония заключается в том, что самоподобные фракталы нашли себе надежное место под солнцем в качестве материала для всевозможных контрпримеров и математических игр, в то время как самоинверсные фракталы образовали узкоспециальный раздел теории автоморфных функций. Теорией этой некоторое время никто не занимался, затем она возродилась, но в весьма абстрактной форме. Одна из причин того, что самоинверсные фракталы оказались полузабыты, состоит в том, что их действительная форма оставалась неисследованной вплоть до настоящей главы, в которой вашему вниманию будет предложен новый эффективный способ их построения.

В последнем разделе главы мы рассмотрим одну физическую проблему, главным героем которой оказывается простейший самоинверсный фрактал.

БИОЛОГИЧЕСКАЯ ФОРМА И «ПРОСТОТА»

Как мы вскоре увидим, многие нелинейные фракталы имеют «органический внешний вид», поэтому данное отступление посвящено биологической теме. Биологические формы часто чрезвычайно сложны, и может показаться, что программы, отвечающие за выращивание таких форм, должны быть очень громоздкими. Особенно парадоксальными представляются случаи, когда внешняя сложность не служит, на первый взгляд, никакой разумной цели (а так случается довольно часто среди относительно простых живых существ) – почему бы Природе не стереть эти громоздкие программы из генетического кода и не освободить место для чего-нибудь действительно полезного?

Однако структура упомянутых сложных форм очень часто включает в себя многочисленные повторы. Вспомните, как в конце главы 6 мы говорили о том, что кривую Коха нельзя считать ни иррегулярной, ни чрезмерно сложной, поскольку она порождается простым и систематическим правилом. Все дело в том, что правило применяется снова и снова, последовательными циклами. В главе 17 эти соображения распространены на кодирование структуры легких.

В главах 18 и 19 мы намерены пойти гораздо дальше и обнаружить, что одни фракталы, построенные согласно нелинейным правилам, напоминают то насекомых, то головоногих, тогда как другие похожи на растения. Парадокс исчезает, уступая место невероятно тяжелому труду воплощения идей в реальность.

СТАНДАРТНАЯ ГЕОМЕТРИЧЕСКАЯ ИНВЕРСИЯ

Следующей по сложности геометрической фигурой после прямой является в евклидовой геометрии окружность, причем окружность остается окружностью не только при преобразовании подобия, но и при преобразовании обратными радиусами, т. е. инверсии. Многие ученые последний раз слышали об инверсии еще в школьные годы, поэтому, на мой взгляд, не лишним будет повторить основные положения. Возьмем окружность C радиуса R с центром в точке O; инверсия по отношению к окружности C преобразует некоторую точку P в точку P', такую, что P и P' лежат на одном луче с началом в точке O, причем длины отрезков |OP| и |OP'| удовлетворяют равенству |OP|×|OP'|=R2. Окружности, содержащие точку O, инвертируются в прямые, содержащие точки O, и наоборот (см. рисунок). Окружности, не содержащие точку O, инвертируются в окружности (рисунок внизу справа). Окружности, ортогональные C, и прямые, проходящие через точку O, остаются инвариантными при инверсии относительно C (рисунок внизу слева).

Рассмотрим теперь совокупность трех окружностей: C1, C2 и C3. Обычно – например, когда открытые ограниченные круги, границами которых являются окружности Cm, не пересекаются – существует окружность Γ, ортогональная каждой из окружностей Cm. Если окружность Γ существует, она совместно самоинверсна относительно Cm.

Эти краткие сведения практически исчерпывают то, что стандартная геометрия способна нам поведать о самоинверсных множествах. Остальные самоинверсные множества фрактальны, и большинство из них можно назвать какими угодно, но никак не гладкими.

Генератор. Самоинверсные множества. Как обычно, мы начинаем с генератора, который в данном случае состоит из некоторого (какого угодно) числа M окружностей Cm. Преобразования, представляющие собой последовательность инверсий относительно этих окружностей, составляют то, что алгебраисты назвали бы группой, порождаемой этими инверсиями; обозначим ее буквой G. Для обозначения самоинверсного множества имеется и формальный термин: «множество, инвариантное под действием операций группы G».

Затравки и кланы. Возьмем любое множество S (назовем его затравкой) и добавим к нему преобразования множества S под действием всех операций группы G. Результат, который мы назовем здесь кланом S, является самоинверсным. Хотя, конечно, смотреть тут особо не на что. Например, если множество S представляет собой расширенную плоскость R (т. е. плоскость плюс точка в бесконечности), то клан S абсолютно идентичен множеству =S.

Химические инверсные группы. Кроме того, может случиться так, что при некоторой заданной группе G, основанной на инверсиях, клан каждой области S покрывает всю плоскость целиком. В этом случае самоинверсное множество также должно представлять собой всю плоскость целиком. По причинам, которые прояснятся в главе 20, я предлагаю называть такие группы хаотическими. Нехаотическими группами мы обязаны Пуанкаре, однако они носят имя Клейна: дело в том, что Пуанкаре однажды ошибочно приписал какую-то из предыдущих работ Клейна Л. Фуксу; Клейн выразил протест, и Пуанкаре в знак примирения пообещал, что назовет свое следующее великое открытие именем Клейна – и ведь назвал!

Придерживаясь пока нехаотических групп, обсудим три самоинверсных множества, отобранных еще Пуанкаре, затем еще одно множество неясного происхождения и, наконец, пятое, важность которого я обнаружил самостоятельно.

ГИПЕРБОЛИЧЕСКАЯ МОЗАИКА ИЛИ ТАЙЛИНГ

Не многим из поклонникам творчества Морица Эшера известно, что этот знаменитый рисовальщик частенько черпал вдохновение непосредственно из трудов «неизвестных» математиков и физиков (см. [89]). Вся его работа часто состояла в простом добавлении украшений к самоинверсным мозаикам, известным Пуанкаре и представленным на многочисленных иллюстрациях в [154].

Эти множества (обозначим их через T) получаются посредством объединения кланов самих окружностей Cm.

Так как группа G нехаотична, дополнением объединенных кланов окружностей Cm является совокупность круговых многоугольников, называемых «открытыми плитками». Любую открытую плитку (или ее замыкание) можно трансформировать в любую другую открытую (или замкнутую) плитку посредством последовательности инверсий, принадлежащих группе G. Иными словами, клан любой замкнутой плитки есть . Что более важно, клан любой открытой плитки есть дополнение множества T. А T является, так сказать «раствором», на который укладываются эти плитки. Плоскость самоинверсна. Множество T и его дополнение также самоинверсны и образуют «гиперболическое разбиение» или «мозаику» на плоскости . (Английское слово tessellation, «мозаика», происходит от латинского tessera «квадрат», которое, в свою очередь, восходит к греческому τεσσαρες «четыре», однако плитки вовсе не обязательно должны быть четырехугольными – подойдет любое число, большее 2.) А на рисунках Эшера каждая плитка украшена вдобавок причудливой картинкой.

ПРЕДЕЛЬНОЕ МНОЖЕСТВО ИНВЕРСНОЙ ГРУППЫ

Самым интересным самоинверсным множеством является самое маленькое. Оно называется предельным множеством (и обозначается буквой ), поскольку является также множеством предельных точек преобразований любой исходной точки под действием операций группы G. Оно принадлежит клану любой затравки S. Проясним формальное определение: множество состоит из таких предельных точек, которые не могут быть получены конечным числом инверсий. На интуитивном уровне это множество можно представить как область скопления бесконечно малых потомков.

Множество можно свести к точке или окружности, однако в общем случае оно является фрагментированным и/или/ иррегулярным фрактальным множеством.

Множество стоит в мозаике особняком, как «множество бесконечно малых плиток». Оно играет по отношению к конечным элементам мозаики такую же роль, какую играют концы ветвей (см. главу 16) по отношению к самим ветвям. Однако здесь ситуация проще: подобно мозаика T представляет собой самоинверсное множество без остатка.

Множество называется аполлониевым, если оно состоит из бесконечного количества окружностей вместе с их предельными точками. В данном случае его фрактальность является исключительно следствием фрагментации. Этот прецедент был изучен и осмыслен (хотя и в несколько многословной манере) на раннем этапе истории предмета.

Сначала мы построим основной пример, а затем покажем его самоинверсность. Аполлоний Пергский – это древнегреческий математик, живший в III в. до нашей эры. Он был представителем александрийской школы и верным последователем Евклида и известен, помимо прочего, тем, что составил алгоритм построения пяти окружностей, касательных к трем заданным окружностям. В том случае, когда заданные окружности взаимно касательны, число аполлониевых кругов равно двум. Как мы вскоре убедимся, вполне можно предположить, не потеряв при этом в общности, что две из заданных окружностей являются внешними по отношению друг к другу, но содержаться внутри третьей.

Эти три окружности определяют два круговых треугольника, углы которых равны . А аполлониевы окружности - это наибольшие окружности, какие можно вписать в эти треугольники.

Законченное аполлониево построение включает в себя пять окружностей, три заданных и две аполлониевых, которые вместе определяют шесть круговых треугольников. Повторяя вышеописанную процедуру, впишем в каждый треугольник наибольшую возможную окружность. Результат бесконечного повторения такой процедуры называется аполлониевой упаковкой. А если добавить к этой бесконечной совокупности окружностей ее предельные точки, то получится множество, которое я назвал аполлониевой сетью. Область сети, заключенную внутри кругового треугольника (как показано на рисунке) будем называть аполлониевой салфеткой.

Если одну из аполлониевых окружностей первого поколения заменить на любую из заданных внутренних окружностей, предельное множество никак не изменится. Если указанной аполлониевой окружностью заменить внешнюю заданную окружность, то построение начинается с трех заданных окружностей, внешних по отношению друг к другу, и одна из аполлониевых окружностей первого этапа окажется наименьшей окружностью, описанной вокруг трех заданных. После такого нетипичного этапа построение продолжается так же, как описано выше, подтверждая то, что наш рисунок и в самом деле соответствует наиболее общему случаю.

Упаковка Лейбница. Аполлониева упаковка похожа на конструкцию, которую я называю круговой упаковкой Лейбница, так как, насколько мне известно, впервые она была описана в письме Лейбница к де Броссу: «Представьте себе окружность, а затем впишите в нее еще три окружности наибольшего возможного радиуса, конгруэнтные друг другу: повторите аналогичную операцию с каждой из этих окружностей и с каждым промежутком между ними. А теперь вообразите, что этот процесс продолжен до бесконечности…»

АПОЛЛОНИЕВЫ СЕТИ САМОИНВЕРСНЫ

Вернемся к началу построения аполлониевой сети: трем касательным окружностям. Добавим сюда любую из соответствующих аполлониевых окружностей и назовем получившиеся четыре окружности Γ - окружностями. Все четыре показаны на нижеследующем рисунке жирными линиями.

Существует четыре комбинации из трех Γ - окружностей (мы будем называть их триплетами), и каждой из них соответствует окружность, ортогональная каждой окружности триплета. Возьмем эти новые окружности в качестве генератора и обозначим через C1, C2, C3 и C4 (на рисунке ниже они показаны тонкими линиями). А Γ - окружность, ортогональную окружностям Ci, Cj и Ck, обозначим как Γijk.

Разделавшись с нудным развешиванием ярлыков, получаем заслуженную награду. Даже самое поверхностное рассмотрение показывает, что наименьшее (замкнутое) множество, самоинверсное по отношению к четырем порождающим окружностям Cm, представляет собой аполлониеву сеть, построенную на четырех Γ-окружностях. Любопытно, что об этом наблюдении никто явным образом не сообщает, хотя оно должно быть известно довольно широко.

При более тщательном изучении мы увидим, что каждая окружность в сети преобразуется в одну из Γ-окружностей, проходя через уникальную последовательность инверсий относительно окружностей C. Таким образом, принадлежащие аполлониевы сети окружности можно рассортировать на четыре клана, причем клан, нисходящий от окружности Γijk, мы будем обозначать как GΓijk.

ВЯЗАНИЕ СЕТЕЙ ИЗ ОДНОЙ НИТИ

Аполлониева салфетка и салфетка Серпинского (рис. 205) имеют одно важное общее свойство: дополнение салфетки Серпинского представляет собой объединение треугольников (σ-треугольник), а дополнение аполлониевой сети или салфетки есть объединение дисков (σ- диск).

Однако нам также известно, что салфетка Серпинского допускает альтернативное кохово построение, в котором конечные приближения являются терагонами (ломаными линиями) без самокасаний, а двойные точки появляются только в пределе. Это означает, что салфетку Серпинского можно построить, не отрывая карандаша от бумаги; через некоторые точки линия пройдет дважды, но она никогда не пройдет дважды по одному отрезку прямой.

Выражаясь метафорически, салфетку Серпинского можно связать из одной-единственной нити!

То же верно и для аполлониевой сети.

НЕСАМОПОДОБНЫЕ КАСКАДЫ И ОЦЕНКА РАЗМЕРНОСТИ

Круговые треугольники аполлониевой упаковки не подобны друг другу, следовательно, аполлониев каскад не самоподобен, а аполлониева сеть не является масштабно-инвариантным множеством. Сейчас следовало бы обратиться к определению Хаусдорфа – Безиковича для размерности D (как показателя, определяющего меру), которое применимо к любому множеству, однако получение D таким способом оказывается удивительно сложным делом. На данный момент наилучшим результатом (см. работы Бойда [50, 51]) является следующий:

1,300197<D<1,314534,

хотя его же последние (еще не опубликованные) численные эксперименты дают D~1,3058.

В любом случае, поскольку D есть дробное число, а DT=1, аполлониевы салфетка и сеть являются фрактальными кривыми. В данном контексте величина D представляет собой меру фрагментации. Если, например, «удалить» диски, радиус которых меньше ε, то периметр оставшихся промежутков будет пропорционален ε1−D, а площадь – пропорциональна ε2−D.

МНОЖЕСТВО В НЕФУКСОВЫХ ЦЕПЯХ ПУАНКАРЕ

Самоинверсные фракталы, получаемые при инверсиях относительно не столь особых конфигураций порождающих окружностей Cm, оказываются более сложными, чем любая аполлониева сеть. Чуть позже я познакомлю вас со своей собственной рабочей конструкцией, которая в большинстве случаев вполне удовлетворительно характеризует множество . Она является большим шагом вперед по сравнению с предыдущим, предложенным Пуанкаре и Клейном, методом, который весьма громоздок и очень медленно сходится.

Однако старый метод также сохраняет свою значимость, поэтому я предлагаю рассмотреть его на примере особого случая. Пусть окружности Cm образуют конфигурацию, которую можно назвать цепью Пуанкаре; эта конфигурация представляет собой совокупность M окружностей Cm, расположенных по кругу и соответственно пронумерованных, так что окружность Cm касательна к Cm−1 и Cm+1 (по модулю M) и не пересекает никаких других окружностей цепи. В этом случае множество представляет собой кривую, которая разделяет плоскость на две области – внешнюю и внутреннюю. (Воздавая должное Камилю Жордану, который первым обнаружил неочевидность того, что плоскость можно таким образом разделить одной-единственной петлей, такие петли называются с тех пор кривыми Жордана.)

В случае, когда все окружности Cm ортогональны одной окружности Γ, множество совпадает с Γ. Этот случай, называемый фуксовым, в настоящей главе не рассматривается.

Построение Пуанкаре для множества . Ниже приводится полное описание общепринятого построения множества и моего альтернативного варианта для случая особой цепи с M=4, показанной на следующем рисунке.

Для получения Пуанкаре и Клейн (см. [154]) поэтапно заменяют исходную цепь цепями, составляемыми из все возрастающего числа все уменьшающихся звеньев. На первом этапе каждое звено Ci заменяется инверсиями остальных звеньев Cm относительно Ci; таким образом, получается, в общей сложности, M(M−1)=12 меньших звеньев. Они показаны на рисунке справа вверху на фоне негативного изображения исходных звеньев. И так далее – на каждом этапе мы берем полученную на предыдущем этапе цепь и инвертируем ее относительно каждого из исходных звеньев Cm. На рисунке черным цветом показано несколько последовательных этапов построения, причем каждый из них наложен на результат предыдущего этапа, показанный белым цветом на сером фоне. В конце концов, цепь истончается в нить, т. е. в .

К сожалению, некоторые звенья и после достаточно большого количества этапов остаются довольно крупными, и даже сильно продвинутые аппроксимации предельной цепи дают довольно слабое представление о множестве . Это неприятное свойство прекрасно иллюстрирует рисунок 255.

ПОНЯТИЕ О ФРАКТАЛЬНОЙ ОСКУЛЯЦИИ

Мой способ построения множества основан на новом для нас понятии фрактальной оскуляции, которое расширяет рамки ее очевидного воплощения в аполлониевом случае.

Стандартная оскуляция. Это понятие непосредственно связано с концепцией кривизны. Первым приближением стандартной кривой в окрестности регулярной точки P является касательная прямая. Вторым приближением является окружность, касательная к которой в этой точке совпадает с упомянутой прямой, а кривизна – с кривизной кривой. Такая окружность называется оскулирующей.

Для различения окружностей, касательных к данной кривой в точке P, очень удобно использовать параметр (обозначим его буквой u), который представляет собой инверсию интервала (произвольно ориентированного), соединяющего точку P с центром окружности. Обозначим индекс оскулирующей окружности через u0. Если u<u0, то небольшой участок кривой с центром в точке P целиком лежит с одной стороны касательной окружности, если же u>u0, то – с другой.

Величина u0 есть то, что физики называют критическим значением, а математики – разрезом. Кроме того, значение |u0| определяет локальную «кривизну».

Глобальная фрактальная оскуляция. В случае аполлониевой сети попытка определить оскуляцию через кривизну лишена смысла. Однако в любой точке сети, где касательны две принадлежащие упаковке окружности, они, очевидно, «охватывают» остаток множества , заключенный между ними. Возникает искушение назвать их обе окружности оскулирующими.

Для того чтобы распространить это понятие на неаполлониевы множества , выберем точку, в которой имеет касательную, и возьмем в качестве отправной точки определение обыкновенной оскуляции, основанное на понятии критичности (или разреза). Новизна же заключается в том, что при −∞<u<+∞ мы заменим одно критическое значение u0 двумя различными значениями, u' и u''>u', которые определим следующим образом: при любом u<u' множество целиком лежит с одной стороны нашей окружности, при любом u>u'' - с другой, а при u'<u<u'' части находятся и с той, и с другой стороны окружности. Что же касается окружностей с индексами, равными u' и u'', я предлагаю их обе считать фрактально оскулирующими.

Любая окружность ограничивает два открытых диска (один из них содержит центр этой окружности, другой – точку в бесконечности). Открытые диски, ограниченные оскулирующими окружностями и не принадлежащие множеству , мы будем называть оскулирующими дисками.

Случается и так, что одна или обе оскулирующие окружности вырождаются в точку.

Локальное и глобальное. Возвращаясь к стандартной оскуляции, заметим, что эта концепция является локальной, так как ее определение никак не зависит от формы кривой на каком-либо удалении от точки P. Иными словами, кривая, касательная к ней и оскулирующая окружность могут иметь сколько угодно точек пересечения кроме P. Напротив, приведенное выше определение фрактальной оскуляции глобально, хотя это различие и не принципиально. Фрактальную оскуляцию можно определить и локально, причем с соответствующим расщеплением «кривизны» на два числа. Как бы то ни было, в нашей теперешней задаче глобальная и локальная оскуляции совпадают.

Оскулирующие треугольники. С аналогом глобальной фрактальной оскуляции мы, если помните, уже встречались. Для того чтобы определить внутреннюю область нашей старой знакомой снежинки Коха (кривой K) как σ- треугольник, достаточно увеличивать треугольники, выкладываемые на каждом следующем этапе построения фигуры, изображенной на рис. 70, настолько, насколько это возможно без пересечения их со снежинкой.

Σ- ДИСКИ, ОСКУЛИРУЮЩИЕ МНОЖЕСТВО

Оскулирующие диски и σ- диски являются ключевыми фигурами в моем новом, свободном от перечисленных на с. 247 недостатков, способе построения множества . Этот способ демонстрируется в полном виде впервые (хотя о нем уже упоминалось в 1980 г. в «Математическом календаре»). Суть его в том, что следует инвертировать не сами окружности Cm, а некоторые из окружностей Γijk, которые (согласно определению на с. 244) ортогональны триплетам Ci, Cj и Ck. Здесь мы опять полагаем, что не все окружности Γijk совпадают с одиночной окружностью Γ.

Ограничение M=4. Если ограничить число исходных окружностей M четырьмя, то мы сможем быть уверены в том, что для любого триплета i, j, k один из двух открытых дисков, ограниченных окружностью Γijk (т.е. либо внутренний, либо наружный), не содержит ни одной из точек γmn, определенных на с. 247. Обозначим этот свободный от точек γ диск через Δijk.

Основой моего способа построения послужили следующие наблюдения: все свободные от γ диски Δijk оскулируют ; таким же свойством обладают их инверсии и повторные инверсии относительно окружностей Cm, а кланы, построенные с применением дисков Δijk в качестве затравок, заполняют всю плоскость за исключением кривой .

На рис. 253 мы воспользуемся той же цепью Пуанкаре, какую вы уже видели на с. 247, но изобразим ее в более крупном масштабе. Как и в большинстве случаев, первый этап построения обрисовывает кривую довольно точно. Последующие этапы весьма «эффективно» добавляют все более мелкие детали, и после нескольких этапов мы уже вполне можем мысленно интерполировать кривую , не отвлекаясь на ошибки, от которых, к сожалению, не свободен подход Пуанкаре.

ОБОБЩЕНИЯ

Цепи из пяти и более звеньев. В случае, когда число исходных звеньев в цепи Пуанкаре превышает четыре, мой новый способ построения множества включает в себя дополнительный шаг: сначала следует разделить окружности Γ на две группы. Дело в том, что некоторые из окружностей Γ в этом случае таковы, что каждый из ограниченных ими открытых дисков содержит, по меньшей мере, одну точку γmn, в результате чего диск Δijk оказывается, не определен. Такие окружности Γ не оскулируют кривую , а пересекают ее. Однако для построения кривой они нам не нужны.

Остальные окружности Γijk определяют оскулирующие диски Δijk, которые в свою очередь, также делятся на два класса. При добавлении к диску Δijk первого класса его кланов мы получим внутреннюю область кривой ; проделав же такую операцию с диском, принадлежащим ко второму классу, получим внешнюю область .

Это верно для многих (но не для всех) случаев, когда окружности Cm не образуют цепь Пуанкаре.

Перекрывающиеся и/или/ разорванные цепи. В случае, когда окружности Cm и Cn имеют две точки пересечения γ'mn и γ"mn, эти точки совместно заменяют точку γ. Если же окружности Cm и Cn не имеют ни одной точки пересечения, γ заменяется двумя взаимно инверсными точками γ'mn и γ"mn. Критерий идентификации Δijk становится при этом довольно громоздким, однако основная идея остается неизменной.

Разветвленные самоинверсные фракталы. Кривая может соединять в себе характерные особенности как смятой петли (кривой Жордана), так и аполлониевой сети, в результате чего мы получаем фрактально разветвленную кривую, близкую к тем, что мы рассматривали в главе 14, но часто гораздо более причудливого вида (см., например, рис. С7).

Самоинверсные пыли. Множество может также оказаться фрактальной пылью.

АПОЛЛОНИЕВА МОДЕЛЬ СМЕКТИЧЕСКОЙ СТРУКТУРЫ

В этом разделе мы ознакомимся с ролью, которую понятия аполлониевой упаковки и фрактальной размерности играют в описании класса веществ, известных под названием «жидкие кристаллы». В процессе этого ознакомления нам предстоит обратиться к одной из наиболее активных областей современной физики – теории критических точек. Примером критической точки может служить «точка» на диаграмме температура-давление, описывающая физические условия, при которых в пределах одной физической системы могут сосуществовать в равновесии твердая, жидкая и газообразная фазы. Аналитические характеристики физической системы в окрестности критической точки масштабно-инвариантны, следовательно, подчиняются степенным законам с некими конкретными критическими показателями (см. главу 36). Многие из этих показателей оказываются фрактальными размерностями, и вот перед вами первый пример.

Поскольку жидкие кристаллы не так хорошо известны широкой публике, как того хотелось бы, я начну с их описания, для чего обращусь к статье Брэгга [52]. Эти прекрасные и таинственные субстанции подвижны, как жидкости, однако с оптической точки зрения ведут себя подобно кристаллам. Их длинные цепеобразные молекулы имеют довольно сложную структуру. Некоторые жидкокристаллические фазы называются смектическими (от греч. σμηγμα, что означает «мыло»), так как моделируют мылообразные органические системы. Молекулы смектического жидкого кристалла расположены в слое вертикально и параллельно друг другу, как колосья на поле, при этом толщина слоя равна длине молекулы. В результате получаются очень гибкие и прочные слои или листы, которые, будучи деформированными, стремятся вернуть себе прежнюю форму. При низких температурах слои располагаются один на другом, точно листы в книге, образуя при этом твердый кристалл. Однако при повышении температуры становится возможным легко сдвигать слои относительно друг друга. Каждый слой представляет собой двумерную жидкость.

Особый интерес представляют фокальные конические структуры. Жидкокристаллический блок разделяется на два набора пирамид, причем основания половины из них располагаются на одной из двух противоположных граней, а вершины - на другой. Жидкокристаллические слои внутри каждой пирамиды оказываются свернутыми и образуют множество и приблизительно перпендикулярны плоскости основания пирамиды. В результате основанием каждого конуса является диск, ограниченный окружностью. Минимальный радиус ε такой окружности равен толщине слоя жидкого кристалла. Когда конусы заключены внутри пространственной области – в данном случае, пирамиды с квадратным основанием, - диски, образующие основания конусов, распределяются по основанию этой области (пирамиды). Для получения равномерного распределения следует начать с размещения на основании диска наибольшего радиуса. Затем поместим диски наибольшего возможного радиуса в каждый из остающихся углов и так далее. Если бы было возможно продолжать такое размещение до бесконечности, мы получили бы в точности аполлониеву упаковку.

Физические свойства такой модели мыла зависят от общих площади и периметра пустых промежутков, которые связаны с фрактальной размерностью D, своего рода фотографического «негатива», т.е. салфетки, сквозь отверстия которой не проходят молекулы мыла. Физические подробности можно найти в работе [32].

Рис. 253. Самоинверсный фрактал (построение Мандельброта)


Верхняя фигура. В цепях Пуанкаре с M=4 по крайней мере один из дисков Δijk (назовем его Δ123) всегда не ограничен и пересекается с диском Δ341. (На данном рисунке диск Δ341 также не ограничен, однако в других случаях это не так.) Объединение дисков Δ123 и Δ341 (показанное на рисунке серым цветом) дает первое приближение области, внешней к кривой . Оно аналогично приближению области, внешней к кривой Коха K, с помощью правильного выпуклого шестиугольника (см. рис. 71).

Диски Δ234 и Δ412 также пересекаются, и их объединение (показанное на рисунке черным цветом) дает первое приближение внутренней области . Оно аналогично приближению внутренней области кривой K с помощью двух треугольников, образующих правильную шестиконечную звезду (см. рис. 71).

Средняя фигура. Второе приближение области, внешней к кривой , достигается добавлением к дискам Δ123 и Δ341 их инверсий относительно окружностей C4 и C2, соответственно. Результат (серая область) аналогичен второму приближению области, внешней к кривой K, на рис. 71.

Соответствующее второе приближение внутренней области достигается добавлением к дискам Δ234 и Δ412 их инверсий относительно окружностей C1 и C3, соответственно. Результат (черная область) аналогичен второму приближению внутренней области кривой K на рис. 71.

Нижняя фигура. Внешняя область (серый цвет) является объединением кланов Δ123 и Δ341. Внутренняя же (черный цвет) – объединением кланов Δ234 и Δ412. Тонкая структура внутренней области показана на рис. 255 внизу (при построении использованы разные цепи Пуанкаре). Черная и серая открытые области вместе покрывают всю плоскость (за вычетом кривой ).

Рис. 254. Самографический фрактал (вблизи предела Пеано)


Группы, основанные на инверсиях, интересуют математиков, прежде всего потому, что они связаны с определенными группами гомографией. Гомография (называемая также гомографией Мебиуса или дробно-линейным преобразованием) отображает z- плоскость по закону z→(az+b)/(cz+d), где ad−bc=1. В наиболее общем виде эта гомография может быть представлена как результат инверсии, симметрии относительно линии (что есть вырожденная инверсия) и вращения. Вот почему при отсутствии вращения исследователь гомографией может почерпнуть много интересного из изучения групп, основанных на инверсиях. Очевидно, однако, что введение вращений открывает новые богатые возможности.

На рисунке изображен пример предельного множества для группы гомографий. Построил его Дэвид Мамфорд (в ходе исследований, стимулом для которых послужили новые результаты, о которых говорится в данной главе), а затем любезно разрешил опубликовать свое построение в этой книге. Фигура эта почти заполняет плоскость и демонстрирует поразительные аналоги (и равно поразительные различия) с почти заполняющей плоскость кривой, изображенной на рис. 270.

Фрактальная природа предельного множества группы гомографий в широком диапазоне условий была доказана Т. Акадзой, А. Ф. Бирдоном, Р. Боуэном, С. Дж. Паттерсоном и Д. Салливеном. См. [545].

Рис. 255. Знаменитый самоинверсный фрактал, исправленный вариант (построение Мандельброта)


Рисунок вверху слева воспроизводит рис. 156 из книги Фрикке и Клейна [154], который призван изображать самоинверсный (в моей терминологии) фрактал, генератор которого состоит из пяти окружностей, ограничивающих центральную область (она показана черным цветом). Этот рисунок весьма часто появляется в математической литературе.

Действительной формой этого фрактала является контур фигуры, изображенной вверху справа; фигура эта построена с помощью моего метода оскулирующих σ- дисков. Расхождение, конечно, ужасное. Фрикке знал, что кривая должна содержать окружности, и велел иллюстратору включить их в рисунок. Обо всем остальном он не знал и, очевидно, даже не подозревал, насколько иррегулярной фигуры ему следует ожидать.

В действительности кривая включает в себя границу * фигуры, построенной справа внизу с использованием моего алгоритма. Эта граница * представляет собой самоинверсный фрактал, соответствующий четырем из тех порождающих окружностей, что образуют цепь Пуанкаре. Ясно видно, что преобразования * при иных инверсиях принадлежит . Этот рисунок подробно рассмотрен в работе [400].

19. КАНТОРОВА ПЫЛЬ И ПЫЛЬ ФАТУ. САМОКВАДРАТИРУЕМЫЕ ДРАКОНЫ

В этой главе мы рассмотрим два семейства очень простых нелинейных преобразований (или отображений) и исследуем несколько таких фрактальных множеств, которые при этих преобразованиях остаются инвариантными и для которых они могут служить генераторами.


Во-первых, дробно-линейное преобразование вещественной линии поможет нам лучше понять нашу старую знакомую – канторову пыль. Эти замечания, конечно, можно было вставить в главу 8, однако мне кажется, что они будут лучше восприняты на данном этапе.

Они, в частности, помогают оценить результаты вещественных и комплексных квадратичных преобразований вида x→f*(x)=x2−μ, где x и μ вещественны, и z→f*(z)=z2−μ, где z=x+iy и μ - комплексные числа.

Элементарный случай μ=0 довольно скучен с геометрической точки зрения, однако другие значения μ ведут к потрясающим фрактальным красотам, многие из которых были впервые продемонстрированы в статье [398].

Удобнее всего получать упомянутые инвариантные формы с помощью итераций (т. е. многократных применений) одного из вышеуказанных преобразований. Исходные значения мы будем обозначать через x0 или z0, а результаты k- й итерации функции f* - через xk или zk.

Хронологически изучение итераций можно разделить на три этапа. Первый, связанный с комплексной переменной z, прошел под знаменами Пьера Фату (1878 – 1929) и Гастона Жюлиа (1893 – 1978). Их публикации являются шедеврами классического комплексного анализа, ими восхищаются математики, однако на их фундаменте чрезвычайно сложно что-нибудь построить. В своей работе, о которой данная глава дает лишь весьма сжатое представление, я стараюсь придать бóльшую наглядность их основным открытиям, объединяя анализ с физикой и подробными иллюстрациями, в результате чего обнаруживается великое множество неизвестных ранее фактов.

Последовавшее за этими открытиями возрождение помогло установить тесную связь свойств итераций с теорией фракталов. Из того факта, что находки Фату и Жюлиа оказались недостаточно проработаны для того, чтобы стать основой теории фракталов, мы можем сделать вывод, что даже классический анализ нуждается иногда в наглядности и интуитивной понятности, причем компьютерное моделирование может оказать ему в этом смысле серьезную помощь.

Следующий, промежуточный, этап включает в себя исследования Мирбергом итераций вещественных квадратичных отображений (см., например, [440], а также труды Штейна и Улама [538] и Бролина [55]).

На текущем этапе исследователи, по бóльшей части, игнорируют прошлое и сосредоточивают свои усилия на отображениях интервала [0,1] в себя (за подробностями рекомендую обратиться к обзорам [180], [209], [83], [144] и [219]). В последнем разделе главы рассматривается показатель δ по [179] и [142]: доказывается, что существование δ следует из более явного свойства итераций в комплексной плоскости (т. е. их фрактальности).

ВОЗМОЖНОСТЬ ПОЛУЧЕНИЯ КАНТОРОВОЙ ПЫЛИ ПОСРЕДСТВОМ НЕЛИНЕЙНОГО ПРЕОБРАЗОВАНИЯ

Из главы 8 нам известно, что троичная канторова пыль C инвариантна при преобразовании подобия, если коэффициент подобия имеет вид 3−k. Это самоподобие является, безусловно, очень важным свойством, однако его недостаточно для определения C. Напротив, мы можем полностью определить множество C как наибольшее ограниченное множество, инвариантное при следующем нелинейном преобразовании («перевернутое V»):

x→f(x)={1/2−|x−1/2|}/r, где r=1/3.

Точнее, мы многократно повторяем это самоотображение вещественной оси, при этом исходное значение x0 «размазано» по оси x, а окончательные значения сводятся к точке x=−∞ и канторовой пыли C. Неподвижные точки x=0 и x=3/4 принадлежат C.

Набросок доказательства инвариантности множества C. Поскольку f(x)=3x при x<0, итерации всех точек x0<0 сходятся к −∞ прямо, т.е. всегда справедливо неравенство xn<0. Для точек x0>1 прямой сходимости предшествует один предварительный этап, так как xk<0 для всех k≥1. Для точек в пустой области z/3<x0<2/3 предварительных этапов будет два, так как x1>0, но xk<0 для всех k≥2. Для точек в пустых областях 1/9<x0<2/9 или 7/9<x0<8/9 предварительных этапов будет уже три. В более общем виде это выглядит так: если интервал ограничен пустой областью, которая отправляется в бесконечность после k предварительных этапов, то средняя треть (открытая) этого интервала отправится прямо в −∞ после (k+1)- го этапа. Однако ни одна точка множества C не уходит в −∞.

КОНЕЧНОСТЬ ВНЕШНЕГО ПОРОГА

Для того чтобы распространить эти выводы на обобщенную канторову пыль с N=2 и r в интервале от 0 до 1/2, достаточно вставить желаемое значение r в выражение f(x)={1/2−|x−1/2|}/r. Если вы хотите получить какую-либо другую пыль, вам нужно лишь проследить, чтобы график функции f(x) имел соответствующую зигзагообразную форму.

Однако аналогичного метода для экстраполяции канторовой пыли на всю вещественную ось не существует. Это – частное проявление одного очень общего свойства: нелинейная функция f(x), как правило, заключает в себе некоторый конечный внешний предел Ω=∞; при возникновении необходимости в конечном пороге его приходится вводить искусственно.

АНАТОМИЯ КАНТОРОВОЙ ПЫЛИ

Из главы 7 нам известно, что множество C является очень «разреженным», и все же поведение итераций f(x) приводит к лучшему пониманию тонких различий между его точками.

Вряд ли кто при первом знакомстве с канторовым множеством смог избежать искушения предположить, что оно в конечном итоге сходится к концевым точкам открытых пустых областей. Тем не менее, такое предположение весьма далеко от истины, поскольку множество C содержит, по определению, все пределы последовательностей концевых точек пустот.

Этот факт не считается интуитивно очевидным. Я (равно как и мои соратники и единомышленники) вполне понял бы, если бы наш многострадальный старый знакомец Ганс Хан внес эти предельные точки в свой список концепций, существование которых может оправдать лишь холодная логика. Однако из настоящего обсуждения мы с вами вынесем интуитивное доказательство того, что упомянутые предельные точки обладают сильными и отличными от других индивидуальностями.

Например, точка x=3/4, которую функция f(x) оставляет неизменной, не принадлежит ни какому-либо из интервалов средней трети, ни границе какого-либо из этих интервалов. Итерация точек вида x=(1/4)/3k сходятся к точке x=3/4. Кроме того, существует бесконечное множество предельных циклов, каждый из которых состоит из конечного числа точек. Множество C содержит также точки, преобразования которых бесконечно перемещаются вокруг него самого.

ГЕНЕРАТОР КВАДРАТОВ

Производящая функция f(x) преобразования «перевернутое V», используемая в предыдущих разделах, была выбрана из-за того, что она дает знакомый нам результат. Однако полученная с ее помощью канторова пыль выглядит несколько надуманной. Заменим ее функцией

x→f(x)=λx(1−x),

неожиданное богатство свойств которой было впервые замечено Фату [139]. Сдвинув точку начала координат, изменив масштаб оси x и положив μ=λ2/4−λ/2, можно записать эту функцию в следующем виде:

x→f*(x)=x2−μ.

Исходя из соображений удобства, мы будем использовать то f(x), то f*(x).

Мне представляется уместным назвать функцию f(x) (или f*(x)) генератором квадратов. Возведение в квадрат является, безусловно, алгебраической операцией, однако здесь оно получает геометрическую интерпретацию, поэтому множества, которые оно оставляет инвариантными, можно называть самоквадратируемыми. Строго говоря, возведение в квадрат заменяет точку абсциссы с координатой x точкой абсциссы с координатой x2. Таким образом, самоквадратируемых точек на оси всего три: x=∞, x=0 и x=1. Может показаться, что добавление - μ едва ли способно что-либо в этом изменить, однако на самом деле оно открывает множество самых неожиданных возможностей, рассмотрением которых мы и займемся ниже.

ВЕЩЕСТВЕННЫЕ САМОКВАДРАТИРУЕМЫЕ ПЫЛЕВИДНЫЕ МНОЖЕСТВА ФАТУ

Произведя на свет всем хорошо известный конечный продукт (а именно – канторову пыль), V - преобразование значительно облегчило нам задачу по изложению сути удивительного, однако никогда не пользовавшегося широкой известностью открытия Пьера Фату. Допустив, что число λ вещественно и удовлетворяет неравенству λ>4, Фату [139] исследует наибольшее из ограниченных множеств на , остающихся инвариантными при преобразовании f(x). Это множество, которое я называю вещественной пылью Фату, можно считать близким родственником канторовой пыли. Дальнейших объяснений оно не требует; что касается портрета, то он представлен на рис. 273.

В комплексной плоскости при вышеуказанных значениях λ наибольшим ограниченным самоквадратируемым множеством остается вещественная пыль Фату.

САМОКВАДРАТИРУЕМЫЕ КРИВЫЕ ЖЮЛИА НА ПЛОСКОСТИ [398]

Положив μ=0, получаем простейшую самоквадратируемую кривую – окружность |z=1|. При преобразовании z→z2 кольцо, однократно опоясывающее окружность, растягивается в кольцо, опоясывающее эту же окружность дважды, причем «пряжка» при z=1 остается неподвижной. Соответствующая наибольшая ограниченная самоквадратируемая область – диск |z|<1.

Однако введение вещественного μ≠0 (см. рис. 264 и 266) или любого комплексного μ (рис. 271 и 270) открывает настоящий ящик Пандоры, доверху набитый бесконечными возможностями, имя которым фрактальные кривые Жюлиа. Они радуют глаз в той степени, в какой дают пищу для ума.

Сепаратор S. Топология наибольшего ограниченного самоквадратируемого множества зависит от того, где расположена точка μ по отношению к открытой мною разветвленной кривой S, которую я теперь называю сепаратором. Сепаратор – это связная граница черной фигуры на рис. 268 (внизу); иначе говоря, это некая «предельная лемниската», т.е. предел при n→∞ алгебраических кривых, называемых лемнискатами и определяемых выражением |f*n(0)|=R, где R есть некоторое большое число. Структура кривой S показана на рис. 269.

Атомы. Открытая область внутри S разбивается на бесконечное множество максимально связных множеств, которые я предлагаю называть «атомами». Границы двух атомов либо совсем не пересекаются, либо имеют одну общую точку (назовем ее «связью»), которая принадлежит S.

Топологическая размерность. Когда точка μ лежит вне области, ограниченной кривой S, наибольшим ограниченным квадратируемым множеством является пыль (пыль Фату). Если же μ находится внутри S или является связью, то таким наибольшим множеством будет область, ограниченная некоторой самоквадратируемой кривой. Из принадлежащих S точек, μ по крайней мере, несколько дают древовидную кривую.

Самоквадратируемые фракталы. Если верить слухам, то фрактальность вышеупомянутых пылей и кривых при μ≠0 была полностью доказана Денисом Салливеном и для некоторых других случаев, и я ничуть не сомневаюсь, что такое доказательство осуществимо для всех случаев без исключения.

Форма самоквадрируемой пыли или кривой изменяется непрерывно вместе с μ; следовательно, размерность D должна быть гладкой функцией от μ.

Ветвление. Когда λ находится внутри одного из открытых пустых дисков, изображенных на рис. 269 (вверху), самоквадратируемая кривая будет простой замкнутой кривой (петлей без ветвления), как на рис. 264 и 266.

Когда λ принадлежит окружностям |λ|=1 или |λ−2|=1 или лежит в окружающей их открытой связной области, самоквадратируемая кривая имеет вид разветвленной сети с тремами, ограниченными фрактальными петлями, как драконы на рис. 270.

Когда же λ лежит внутри молекул-островов, которые, как мы вскоре покажем, являются областями не стремления к точке (1,0), самоквадратируемая кривая представляет собой либо σ- петлю, либо σ - дракона, как на рис. 271 (внизу). Новой петли σ не вводит.

Рис. 264. Самоквадрируемые фрактальные кривые при вещественном значении λ


Фигуры на рисунках 264 – 273 публикуются впервые (за некоторыми исключениями, использованными мною в [398]).

Слева представлены наибольшие ограниченные самоквадрируемые области при различных значениях λ (а именно, 1,0; 1,5; 2,0; 2,5 и 3,0). Черная фигура в центре охватывает интервал [0,1].

λ=1: ДВУСТВОРЧАТАЯ РАКОВИНА.

λ=3: дракон Сан-Марко. Своего рода безудержная математическая экстраполяция очертаний венецианской базилики на фоне неба вместе с ее отражением в затопленной пьяцце: я окрестил эту кривую драконом Сан-Марко.

Справа помещена кривая при λ=3,3260680. Это значение λ является ядерным (согласно определению на с. 262) и соответствует периоду w=2. Кривая развернута на 90°, иначе она не входила в отведенные для иллюстрации рамки.

Рис. 266. Обобщение самоквадрируемых фрактальных кривых при вещественных λ


Изображенная на рисунке «драпировка» была построена в памяти компьютера с помощью процесса, который сводится к отсечению от исходного куба всех точек, итерации которых при отображении z→λz(1−z) уходят в бесконечность. Параметр λ - вещественное число, изменяющееся в интервале от 1 до 4. Ось λ расположена вертикально, а координаты x и y образуют комплексное число z=x+iy.

Любое горизонтальное сечение представляет собой наибольшую ограниченную самоквадрируемую область с соответствующими значениями параметра μ.

При особом значении λ=2 границей сечения является окружность; будем считать ее «поясом» нашей задрапированной фигуры.

При всех остальных значениях λ границами сечений являются фрактальные кривые, включая и те, что изображены на рис. 264. Можно различить замечательные «складки», расположение которых изменяется в зависимости от λ; ниже пояса они «вдавлены» внутрь, а выше пояса выступают наружу.

Особый интерес представляют наросты на стене, с которой свисает драпировка. К сожалению, данная иллюстрация не может показать сложную структуру верхней части модели во всей ее красе. А). Для каждого значения λ драпировка включает в себя (в качестве своего рода «опоры») фрактальное дерево, составленное из итерированных прообразов точек x - интервала [0,1]. При всех малых и некоторых больших значениях λ<3 ветви этого дерева обладают по всей своей длине некоторой толщиной. Однако при других больших значениях λ от дерева остается лишь голый остов, полностью лишенный толщины. На рисунке мы можем видеть ветви вдоль прямых x=1/2 или y=0, остальные же при данном графическом процессе неизбежно оказываются потеряны. Б). Некоторые горизонтальные участки стены за драпировкой полностью покрыты крохотными «холмами» или «складками», однако мы можем увидеть лишь немногие, самые выдающиеся из них. Эти холмы и складки относятся к «молекулам – островам» (см. рис. 268 и 269), пересекающим вещественную ось. С учетом замечаний А) и Б) теория Мирберга – Фейгенбаума предстает в более общем виде.

Рис. 268 и 269. Сепараторы отображений z→λz(1−z) и z→z2−μ


Рис. 268 (внизу). μ - отображение. Значения μ внутри замкнутой черной области, ограниченной фрактальной кривой, таковы, что итерации точки z0=0 при отображении z→z2−μ не уходят в бесконечность. Большая точка заострения соответствует точке μ=−1/4, а самая правая точка – точке μ=2.

Рис. 269 (вверху). λ - отображение. Значения λ внутри замкнутой черной области и внутри пустого диска удовлетворяют неравенству Reλ>1 и таковы, что итерации точки z0=1/2 при отображении z→λz(1−z) не уходят в бесконечность. Полное λ - отображение симметрично относительно прямой Reλ=1.

Диск |λ−2|≤1 и диск |λ|≤1 без точки λ=0. Значения λ внутри этих областей таковы, что итерации точки z0=1/2 сходятся к некоторой ограниченной предельной точке.

Корона и отростки. Снаружи пустых дисков λ - отображение образует «корону». Она разбивается на «отростки», «корнями» которых являются «принимающие связи», определяемые как точки вида λ=exp(2πim/n), где m/n - неприводимое рациональное число, меньшее 1.

Рис. 268 (вверху). На рисунке показана часть инверсии λ - отображения относительно точки λ=1. Если внимательно рассмотреть на λ - отображении отростки, корни которых имеют вид λ=exp(2πi/n), может сложиться впечатление, что «соответствующие точки» лежат на окружностях. Рисунок подтверждает истинность этого впечатления. Правильность других кажущихся окружностей подтверждается с помощью других инверсий.

Молекулы – острова. Многие «пятна», возникающие при вышеописанных отображениях, представляют собой истинные «молекулы – острова», о которых впервые сообщается в [398]. Форма такой молекулы идентична форме всего μ - отображения целиком, если не учитывать нелинейного искажения.

Сепаратор, основания и деревья. Граница заполненной черной области при λ и μ - отображениях является связной кривой; так как эту кривую обнаружил я, моим долгом было дать ей имя – я назвал ее сепаратором S. Множество внутри ограниченной этой кривой области разбивается на открытые атомы (см. текст). Обозначив период атома через w, определим его основание как кривую, на которой значение f*'w(zμ) вещественно.

Основания, лежащие на вещественной оси, известны в теории самоотображений как интервал [0,1], а их замыкание – как интервал [-2,4].

Словом, я обнаружил, что замыкание других атомных оснований разбивается на совокупность деревьев, каждое из которых укореняется на принимающей связи. В каждой точке такого дерева мы имеем несколько степеней ветвления – степень ветвления для концов ветвей плюс порядки бифуркации, ведущей к корню дерева. Кроме того, когда корень дерева приходится на атом-остров, сюда следует добавить порядки бифуркации, ведущей от дисков |λ−2|≤1 и |λ|≤1 к этому атому.

Рис. 269 (внизу слева). Здесь представлена подробная картина λ - отображения вблизи точки λ=2−exp(−2πi/3). Множество внутри S представляет собой предел областей вида fn(1/2)<R, границами которых являются алгебраические кривые, называемые лемнискатами. Показано несколько таких областей, совмещенных друг с другом. При больших n области, равно как и само λ - отображение, выглядят несвязными; в действительности, они связаны, но вне сетки, использованной при вычислениях.

Рис. 269 (внизу справа). Здесь представлена подробная картина λ - отображения вблизи точки λ=2−exp(−2πi/100). У этого стократно ветвящегося дерева и у z - отображения на рис. 270 имеется несколько весьма удивительных общих свойств.

Рис. 271 и 270. Самоквадрируемые драконы; приближение к «пределу Пеано»


Каждая самоквадрируемая кривая привлекательна по-своему. Я, например, нахожу самыми привлекательными «драконов», изображенных на этих рисунках и на рис. С5.

Драконья линька. Дракон, возводящий сам себя в квадрат, представляет собой совершенно бесподобное зрелище! Чудовищная «линька» отделяет бесчисленные складки от кожи на брюхе и спине дракона. Затем она растягивает шкуру на брюхе и спине так, что ее длина – которая, разумеется, и без того бесконечна – увеличивается вдвое! Затем шкура вновь складывается вдоль спины и брюха. И наконец, на последнем этапе, все складки аккуратно водворяются на новые места.


Фрактальная геральдика. Не следует путать самоквадрируемых драконов с самоподобным драконом от Хартера и Хейтуэя (рис. 101 и 102). Читателю предоставляется прекрасная возможность развлечься, отыскивая немногие сходные черты и многочисленные различия.

Последовательные бифуркации. Наилучшие самоквадрируемые драконы получаются, когда точка λ располагается в отростке (см. рис. 269), который соответствует значению θ/2π=m/n, где m и n - малые целые числа. При бифуркации заданного порядка n вокруг каждой точки сочленения появляется драконьих голов – или хвостов, если хотите. Вторая бифуркация порядка m'/n' разбивает каждую из этих областей на n' «сосискообразных» связей и еще более утончает их.

Чтобы получить умеренно упитанного дракона – ни чрезмерно тучного, ни слишком костлявого, - следует поместить точку λ внутри отростка на некотором расстоянии от его корня. Красиво перекрученные драконы получаются, когда точка λ лежит около одного из двух суботростков, соответствующих порядку бифуркации от 4 до 10: один из суботростков дает изгиб влево, другой – вправо.

Рис. 271 (вверху справа). «Истощенный дракон». Дракон, испытавший на себе бесконечное число бифуркаций, теряет всю свою плоть и ссыхается в скелетообразную разветвленную кривую.

Если множество не расходится в бесконечность, его топологическая размерность равна 0 (для пылевидных множеств Фату), 1 (для недоедающих драконов) и 2 (для всех остальных драконов).

Рис. 271 (внизу). σ - дракон. Это множество связно, точка λ лежит на большом «прибрежном острове» с рис. 269 (внизу).

Рис. 270. Особый предел λ=1. Драконы Пеано. Выберем точку λ на острове, расположенном недалеко от связи при θ=2π/n. При n→∞ величина θ→0; следовательно, λ стремится к 1. Форма соответствующего дракона неизбежно должна устремиться к форме двустворчатой раковины (образующей основание задрапированной фигуры на рис. 266). Однако между n=∞ и n очень большим, но конечным, имеется все же качественное различие.

По мере того, как n→∞, растет число конечностей дракона, его шкура сминается, а ее размерность при этом возрастает. Вся конструкция представляется этаким «драконом-отшельником», пытающимся забиться внутрь двустворчатой раковины λ=1 и способным заполнить всю ее внутреннюю область без остатка, т.е. размерность дракона стремится к D=2. Что же получается? Самоквадрируемая кривая Пеано? Безусловно; однако, как нам известно из главы 7, кривые Пеано вовсе не являются кривыми. Так происходит и здесь: по достижении размерности D=2 наш дракон прекращает свое существование в виде кривой и перевоплощается в область плоскости.

Рис. 273. Вещественные самоквадрируемые пылевидные множества Фату на интервале [0,1]


Работа Фату [139] представляет собой истинный шедевр в рамках того странного литературного жанра, который называется «заметки в «Отчетах» Парижской Академии наук». Задача пишущего в этом жанре часто сводится к тому, чтобы раскрыть по возможности меньше, но при этом создать впечатление, что автор учел все, что только можно было учесть.

Среди прочих восхитительных откровений, которые лучше всего понимаешь только после тщательного самостоятельного изучения, Фату отмечает следующее: когда число λ вещественно и либо λ>4, либо λ<−2, наибольшее ограниченное множество, остающееся инвариантным при преобразовании x→f(x)=λx(1−x), представляет собой пыль, заключенную в интервале [0,1]. На рисунке показана форма этой пыли при λ>4. По вертикальной оси откладывается величина −4/λ в интервале от −1 до 5. Концевые точки x1 и x2 средней тремы являются решениями уравнения λx(1−x)=1; на рисунке они образуют параболу. Тремы второго порядка оканчиваются в точках x1,1, x1,2, x2,1 и x2,2 - таких, что λxm,n(1−xm,n)=xm, и так далее.

Мне думается, что эта замечательная связь между пылевидными множествами, подобными канторовым, и одной из элементарнейших функций заслуживает самой широкой известности, не ограниченной узким кругом специалистов.

μ - АТОМЫ И μ - МОЛЕКУЛЫ

При дальнейшем исследовании параметрического отображения нам будет удобнее пользоваться параметром μ. μ - атом может иметь сердцевидную форму – в этом случае он является «затравкой», с которой связывается бесконечное множество атомов овальной формы (как непосредственно, так и через атомы – посредники). Совокупность взаимно связанных атомов и связей между ними образует «молекулу». Точка заострения затравки связью не бывает никогда.

Каждому атому сопоставлено некоторое целое число w, его «период». Когда точка μ лежит внутри атома периода w, итерации f*n(z) уходят в бесконечность или образуют устойчивый предельный цикл, состоящий из w точек. Внутри атома периода w справедливо неравенство |f*'w(zμ)|=1, причем равенство f*'w(zμ)=1 описывает точку заострения, или «корневую» точку. Каждый атом содержит точку (назовем ее «ядром»), в которой выполняются равенства f*'w(zμ)=0 и f*w(0)=0.

О ядрах, расположенных на вещественной оси, впервые сообщил Мирберг в 1962 г. [440]; после этого они сплыли лишь в 1973 г. (см. [430]). Соответствующие отображения часто называют «сверхустойчивыми» (см. [83]).

Если рассматривать равенство f*w(0)=0 как алгебраическое уравнение относительно μ, то его порядок равен 2w−1. Следовательно, может существовать не более 2w−1 атомов периода w; в действительности их меньше, за исключением случая w=1. При w=2 уравнение f*2=0 имеет два корня, однако один из них уже является ядром «предыдущего» атома периода 1. В более общем виде все корни уравнения f*m(0)=0 являются также корнями уравнения f*km(0)=0, где k - целое число, большее 1. Заметим далее, что каждая рациональная граничная точка, расположенная на границе атома периода w и удовлетворяющая условию f*'w(zμ)=exp(2πim/n), где m/n - неприводимое рациональное число, меньшее 1, заключает в себе «принимающую связь», готовую присоединить атом периода nw. Как следствие, некоторые новые атомы соединяются с существующими принимающими связями. Однако в этот процесс оказываются вовлечены не все новые атомы, и оставшимся не остается ничего иного, как послужить затравкой для новых молекул. Таким образом, число молекул бесконечно.

Когда значение μ непрерывно изменяется внутри молекулы, каждое направленное наружу прохождение связи ведет к бифуркации: w умножается на n. Пример: увеличение вещественного μ приводит к мирбергову удвоению периода. Инверсия бифуркации, которая я рассматриваю в [398] и называю слиянием, должна прекратиться по достижении периода затравки молекулы. Молекула-континент является областью слияния в c=1, а каждая молекула-остров является областью слияния с c>1. Форма дракона или субдракона регулируется значениями f*'w(zμ) и w/c.

СЕПАРАТОР КАК ФРАКТАЛЬНАЯ КРИВАЯ; ПОКАЗАТЕЛЬ ФЕЙГЕНБАУМА δ КАК СЛЕДСТВИЕ

Я предполагаю, исходя из «перенормировочных» соображений, что чем дальше находятся атомы от затравки своей молекулы, тем более идентичными становятся их формы.

Следствие: граница каждой молекулы локально самоподобна. Так как она не является гладкой в малом масштабе, мы можем считать ее фрактальной кривой.

Это локальное самоподобие позволяет обобщить одно свойство бифуркации Мирберга, о котором сообщают Гроссман и Томэ [179], а также Фейгенбаум [142]. Длины отрезков, отсекаемых все уменьшающимися отростками на вещественной оси λ и μ, образуют убывающую геометрическую прогрессию с коэффициентом δ=4,66920... (см. [83]). Первоначально считалось, что существование коэффициента δ обусловлено особенностями аналитического метода. Рассмотренный в новом свете показатель δ оказывается связан с более широким свойством фрактального скейлинга.

Каждая бифуркация из m>2 ветвей вводит дополнительный базисный коэффициент.

20 ФРАКТАЛЬНЫЕ АТТРАКТОРЫ И ФРАКТАЛЬНЫЕ («ХАОТИЧЕСКИЕ») ЭВОЛЮЦИИ

Эта глава имеет своей целью познакомить читателя с одной теорией, которая развивалась вне всякой связи с фрактальными множествами и все же оказалась буквально пронизана ими. Чаще всего ее называют «теорией странных аттракторов и хаотической (или стохастической) эволюции», однако в тексте главы вы, я надеюсь, найдете причины, побудившие меня дать этой теории новое имя (см. заголовок).


Для того чтобы попасть в настоящее эссе упомянутой теории, достаточно было всего лишь быть так или иначе связанной с фракталами; я же считаю оправданным посвятить ей целую главу. Первое оправдание (практическое): эта теория почти не требует какого бы то ни было особого представления, так как бóльшую часть ее основных положений можно рассматривать просто как новую интерпретацию выводов, полученных нами в главах 18 и 19.

Во-вторых, теория фрактальных аттракторов помогает – путем противопоставления – прояснить некоторые особенности фрактальной геометрии природы. В самом деле, моя работа связана, в основном, с формами, присутствующими в реальном пространстве, с формами, которые можно увидеть, пусть даже и в микроскоп; теория аттракторов же имеет дело исключительно с эволюцией во времени расположения неких точек в невидимом и абстрактном репрезентативном пространстве.

Особенно силен этот контраст оказывается в контексте турбулентности – моя первая большая тема (работу над ней я начал в 1964 г.), где я использовал ранние формы фрактальных методик и (вполне независимо от них) теорию странных аттракторов, которая вполне всерьез сочетается с изучением турбулентности в работе [505]. До сих пор эти два подхода еще не пересеклись, но ждать осталось недолго.

Тем, кто интересуется социологией науки, несомненно, покажется занимательным следующий факт: в то время как мои прецедентные исследования, связывающие математических чудовищ с реальными физическими структурами, встречаются с ощутимым сопротивлением, чудовищные формы абстрактных аттракторов воспринимаются с завидной невозмутимостью.

Третий довод в пользу необходимости разговора о фрактальных аттракторах связан с тем, что соответствующие эволюции выглядят «хаотическими» или «стохастическими». Как станет ясно из глав 21 и 22, многие ученые сомневаются в уместности применения случайного в науке; теперь же появляется надежда на оправдание случайности с помощью фрактальных аттракторов.

И наконец, те читатели, кто несколько глав (или пару эссе) назад согласился с моим утверждением о том, что многие из природных проявлений могут быть описаны только с помощью неких множеств, считавшихся ранее патологическими, возможно, с нетерпением ожидают перехода от «как» к «почему». Думаю, приведенные ранее описания и демонстрации дают представление о том, как легко в некоторых случаях оказывается подсластить упомянутые в предыдущих главах геометрические пилюли, чтобы их легче было проглотить. Я же хочу привить читателю вкус именно к фракталам – независимо от того, насколько горьким кажется этот вкус большинству зрелых ученых. Кроме того, я искренне убежден (и еще вернусь к этому в главе 42), что псевдообъяснение посредством подслащивания просто-напросто неинтересно. Таким образом, важность объяснения, судя по всему, сильно преувеличена, и мы будем прибегать к нему лишь в тех случаях, когда имеющееся объяснение действительно интересно – как, например, в главе 11. Вдобавок ко всему, я подозреваю, что когда фрактальные аттракторы лягут в основу фрактальной геометрии видимых естественных форм, появится много новых более детальных и убедительных объяснений.

Так как преобразования с аттракторами нелинейны, наблюдаемые фракталы, скорее всего, окажутся не самоподобными. Это замечательно: мне кажется, что использование фрактального аналога прямой для описания феноменов, управляемых нелинейными уравнениями, выглядит несколько парадоксально. Масштабно-инвариантные фракталы, хорошо объясняющие естественные феномены, могут выступать лишь как локальные приближения нелинейных фракталов.

ПОНЯТИЕ АТТРАКТОРА

Настоящая глава опирается, по большей части, на одно давнее и весьма основательно позабытое наблюдение Анри Пуанкаре: «орбиты» нелинейных динамических систем имеют свойство притягиваться к странным множествам, которые я определяю как нелинейные фракталы.

Рассмотрим для начала простейший аттрактор – точку. «Орбита», определяемая движением маленького шарика после помещения его в воронку, начинает с некоторой спиралевидной траектории, точная форма которой зависит от исходных положения и скорости шарика, однако, в конце концов, сходится к горловине воронки; если диаметр шарика превышает диаметр отверстия воронки, то он там и останется. Для нашего шарика начало горловины воронки является устойчивой точкой равновесия, или устойчивой неподвижной точкой. В рамках достаточно удобной альтернативной описательной терминологии (которую, естественно, не следует интерпретировать с антропоцентрических позиций) горловину воронки можно назвать притягивающей точкой, или аттрактором.

В физической системе устойчивыми и притягивающими могут быть также окружность или эллипс. Например, мы все полагаем (и даже пламенно надеемся – хотя никто из нас не проживет достаточно долго для того, чтобы это имело хот какое-то значение), что солнечная система устойчива, подразумевая, что если орбите Земли и суждено претерпеть какие- либо возмущения, то она, в конце концов «притянется» назад на свою теперешнюю колею.

В более общем виде, динамическую систему принято определять следующим образом: состояние системы в момент времени t представляется точкой σ(t) на прямой, в плоскости, либо в некотором более многомерном евклидовом «фазовом пространстве» E, а ее эволюция между моментами tи t+Δt определяется правилами, в которые величина t явным образом не входит. Любую точку в фазовом пространстве можно принять за начальное состояние σ(0) при t=0, а за ней последует орбита, определяемая функцией σ(t) для всех t>0.

Основное различие между такими системами заключается в геометрическом распределении значений σ(t) при больших значениях t. Принято говорить, что динамическая система имеет аттрактор, если существует некое правильное подмножество A фазового пространства E, обладающее следующим свойством: при почти любой начальной точке σ(0) и достаточно большом t точка σ(t) оказывается в малой окрестности какой-либо точки, принадлежащей A.

ПОНЯТИЕ РЕПЕЛЛЕРА

Мы можем также поместить наш шарик в положение неустойчивого равновесия – например, на кончике карандаша. Если начальное положение не совпадает в точности с точкой равновесия, то шарик словно отталкивается прочь и достигает состояния устойчивого равновесия где-то в другом месте.

Множество всех положений неустойчивого равновесия (вместе с их предельными точками) называется отталкивающим множеством, или репеллером.

Во многих случаях аттракторы и репеллеры меняются местами при смене знаков в уравнениях. Имея дело с силой тяжести, достаточно изменить направление ее действия. Рассмотрим, например, в основном горизонтальную поверхность с прогибами в обоих направлениях. Предположим, что сила тяжести направлена вниз, поместим шарик на верхней стороне поверхности и обозначим притягивающий прогиб буквой A, а отталкивающий – буквой R. Если теперь поместить шарик на нижней стороне поверхности и предположить, что сила тяжести направлена вверх, то прогибы A и R поменяются местами. В этой главе такие обмены играют центральную роль.

ФРАКТАЛЬНЫЕ АТТРАКТОРЫ. «ХАОС»

Бóльшая часть элементарной механики имеет дело с динамическими системами, аттракторами которых являются точки, почти окружности и другие фигуры евклидовой геометрии. Однако в действительности такие фигуры представляют собой редкие исключения, и поведение большинства динамических систем несравнимо более сложно: их аттракторы и репеллеры имеют явную тенденцию к фрактальности. В нескольких следующих разделах описываются примеры систем с дискретным временем, Δt=1.

Аттрактор-пыль. Коэффициент Фейгенбаума α. Простейший пример можно получить с помощью возведения в квадрат (см. главу 19). В качестве вступления рассмотрим еще одно представление канторовой пыли C: N=2, R<1/2, охватываемый интервал [−r/(1−r),r/(1−r)]. Такое множество C является пределом множества Cn, определяемого как множество точек вида ±r±r2±...±rn. При n→n+1, каждая точка множества Cn разделяется на две, а множество C представляет собой результат бесконечного количества таких бифуркаций.

Согласно П. Грассбергеру (источник – препринт статьи), аттрактор Aλ отображения x→λx(1−x) при вещественных λ аналогичен множеству Cn, но с двумя различными коэффициентами подобия, одним из которых является коэффициент Фейгенбаума 1/α~0,3995 (см. [144]). После бесконечного количества бифуркаций этот аттрактор превращается во фрактальную пыль A с размерностью D~0,538.

«Хаос». Ни одна точка множества A за конечный промежуток времени не посещается дважды. Многие авторы описывают эволюции на фрактальных аттракторах как «хаотические».

Самоаффинные деревья. Расположив множество Aλ в плоскости (x,λ), получим дерево. Поскольку δ=4,6692≠α, это дерево асимптотически самоаффинно с остатком.

Комментарий. В идеале теории следовало бы сосредоточиться на интересных по своей сути и реалистичных (но простых) динамических системах, аттракторами которых являются подробно изученные фрактальные множества. Имеющаяся же литература по странным аттракторам – пусть даже она чрезвычайно значима – весьма далека от этого идеала. Рассматриваемые в ней фракталы, как правило, недостаточно хорошо изучены, очень немногие из них действительно интересны, а большинство никак нельзя считать решениями сколь бы то ни было мотивированных задач.

Поэтому я был вынужден самостоятельно изобретать «динамические системы», которые бы поставили новые вопросы – для того, чтобы получить на них давно известные и удобные ответы. Я придумывал задачи таким образом, чтобы их решениями стали знакомые фракталы. Больше всего меня удивляет то, что эти системы оказались еще и интересными.

САМОИНВЕРСНЫЕ АТТРАКТОРЫ

Согласно главе 18, множества в цепях Пуанкаре является как наименьшими самоинверсными, так и предельными множествами. Переформулируем последнее свойство: при произвольно выбранной начальной точке P0 ее преобразования под действием последовательности инверсий подходят произвольно близко к каждой точке множества . Предположим теперь, что эта последовательность инверсий выбирается посредством отдельного процесса, независимого от настоящего и предыдущего положений точки P. При довольно широком разбросе начальных условий всегда можно ожидать (и часто эти ожидания оправдываются), что результирующие последовательности положений P будут притягиваться множеством . Таким образом, огромное количество публикаций по группам, порождаемым инверсиями, можно интерпретировать в терминах динамических систем.

ОБРАЩЕНИЕ «ВРЕМЕНИ»

Дальнейшие поиски систем с интересными фрактальными аттракторами привели меня к системам, аттракторы которых геометрически стандартны, а вот репеллеры оказываются весьма занятными. Эти два множества легко можно поменять местами, тем самым пустив время вспять, при условии, что операции динамической системы допускают существование обратных операций (орбиты не сливаются и не пересекаются), так что, зная положение точки σ(t), можно определить все σ(t') при t'<t. Однако данные конкретной системы, которые мы хотим обратить во времени, представляют собой особый случай. Их орбиты похожи на реки: в направлении вниз по склону их путь однозначно определен, вверх же по склону – каждая развилка требует особого решения.

Попытаемся, например, обратить V - преобразование f(x), с помощью которого мы получили канторову пыль в главе 19. При x>1,5 определены две различные обратные функции, и можно, пожалуй, условиться преобразовывать все x>1,5 в x=1/2. Аналогичным образом, две различные обратные функции имеет отображение x→λx(1−x). В обоих случаях осмысленная инверсия предполагает выбор между двумя функциями. В других примерах возможных вариантов больше. Напомню: нам нужно, чтобы выбор между ними осуществлялся посредством отдельного процесса. Эти соображения приводят нас к обобщенным динамическим системам, которые и будут описаны в следующем разделе.

РАЗЛОЖИМЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ [398]

Потребуем, чтобы одна из координат состояния σ(t) (назовем ее определяющим индексом и обозначим через σf(t)) эволюционировала независимо от состояния остальных E−1 координат (обозначим это состояние через σ*(t)), при условии, что преобразование из состояния σ*(t) в состояние σ*(t+1) будет определяться как состояние σ*(t), так и индексом σf(t). В тех примерах, которые я изучил наиболее подробно, конкретное преобразование σ*(t)→σ*(t+1) выбирается из конечного набора, включающего в себя G различных возможностей Tg, причем выбирается в соответствие со значением некоторой целочисленной функции g(t)=γ[σf(t)]. Иными словами, я рассматривал динамику произведения σ* - пространства на некоторое конечное индексное множество.

Вообще говоря, в примерах, стимулировавших это обобщение, последовательность g(t) либо действительно случайна, либо ведет себя так, словно является случайной. К рассмотрению случайности мы с вами приступим только в следующей главе, однако я не думаю, что это обстоятельство может нам помешать. Гораздо серьезнее другое: динамические системы представляет собой воплощенный образчик полностью детерминированного поведения, и поэтому просто не вправе допускать какую бы то ни было случайность! Мы, однако, можем ввести воздействие случайности, не постулируя ее явно – нам нужно лишь присвоить функции g(t) значение какого-нибудь в достаточной степени перемешивающего эргодического процесса. Возьмем, например, иррациональное число β и сопоставим функции g(t) целую часть числа σf(t)=βtσf(0). Здесь стоило бы сделать еще несколько заявлений, принципиально не сложных, но весьма громоздких, так что я, пожалуй, от этого воздержусь.

РОЛЬ «СТРАННЫХ» АТТРАКТОРОВ

Сторонники «странных» аттракторов выдвигают в свою защиту следующие два соображения. А). Поскольку динамические системы со стандартными аттракторами не в состоянии объяснить турбулентность, то, может быть, ее удастся объяснить с помощью систем с аттракторами, топологически более «странными». (это напоминает мое собственное рассуждение (см. главу 11) – высказанное, кстати, совершенно независимо от приведенного – о том, что если дифференциальное уравнение не имеет стандартных особенностей, следует попытать счастья с особенностями фрактальными. Б). Аттракторы до смешного простых систем – таких, как z→λz(1−z) при вещественных λ и z в интервале [0,1] - действительно странны и во многих отношениях характерны для более сложных и более реалистичных систем. Таким образом, топологически странные аттракторы, вне всяких сомнений, являются, скорее, правилом, нежели исключением.

«ФРАКТАЛЬНЫЕ» ИЛИ «СТРАННЫЕ»?

Все известные «странные» аттракторы представляют собой фрактальные множества. Для многих «странных» аттракторов существуют оценки размерности D. Во всех случаях D>DT. Следовательно, эти аттракторы суть не что иное, как фрактальные множества. Во многих случаях размерность D «странно – аттракторных» фракталов служит мерой не иррегулярности, а того, как накладываются друг на друга гладкие кривые или поверхности – своего рода фрагментации (см. главу 13).

С. Смейл представлял свой знаменитый аттрактор, называемый соленоидом, дважды. Оригинальное определение было чисто топологическим (размерность D при этом оставалась неопределенной), пересмотренный же вариант имеет метрический характер (см. [527], с. 57). Я, в свою очередь, предложил ввести в теорию странных аттракторов понятие размерности D и оценил в [392] значение D для этого пересмотренного варианта. Значение D=2,06 для аттрактора Зальцмана – Лоренца (v=40, σ=16 и b=4) было получено независимо от меня Я. Г. Синаем и М. Г. Веларде (источник – частная беседа). Это значение больше 2, но не намного, т.е. этот аттрактор определенно не является стандартной поверхностью, но близок к таковой. Мори и Фудзисака [437] подтверждают мое значение D для аттрактора Смейла и значение D для аттрактора Зальцмана – Лоренца. Они также нашли размерность D отображения Энона (a=1,4;b=0,3), которая оказалась равной 1,26. Ожидается появление многих других статей в том же духе.

Обратное утверждение. Являются ли все фрактальные аттракторы странными – вопрос семантики. Все больше авторов согласны со мной в том, что аттрактор, как правило, можно считать странным, если он фрактален. Мне такое отношение представляется вполне здравым, если учесть, что слово «странный» выступает как синоним слов «чудовищный», «патологический» и других подобных эпитетов, которыми некогда награждали отдельные фрактальные множества.

Однако прилагательному «странный» иногда придается некий особый терминологический смысл настолько, надо сказать, особый, что аттрактор Зальцмана – Лоренца характеризуется не просто как «странный», но как «странно – странный». В этом свете «странность» аттрактора связывается главным образом с нестандартными топологическими свойствами, в то время как нестандартные фрактальные свойства просто сопутствуют им в качестве «нагрузки». Замкнутая кривая с двойными точками не является в этом смысле «странной», какой бы смятой она ни была: это значит, что большинство из исследованных мною фрактальных аттракторов нельзя считать странными.

При таком определении термина «странный» рассуждения в предыдущем разделе теряют всякую привлекательность. Однако если модифицировать понятие странности с тем, чтобы оно из топологического стало фрактальным, то эту привлекательность можно вернуть. Вот почему я считаю, что победы в споре достойны те, кто определяет «странное» как «фрактальное». А поскольку они и в самом деле побеждают, я не вижу большого смысла в сохранении термина, необходимость в котором исчезла в тот момент, когда я показал, что фракталы не более странны, чем, скажем, горы или береговые линии. Кроме того, не стану скрывать: к термину «странный» я испытываю какую-то личную неприязнь.

Рис. 282 и 283. Притяжение к фракталам


Приведенные здесь фигуры иллюстрируют длинные орбиты последовательных состояний двух разложимых динамических систем. Нагрудник фараона на рис. 283 представляет собой самоинверсное (см. главу 18) множество, основанное на четырех инверсиях, подобранных таким образом, чтобы предельное множество являлось совокупностью окружностей. Дракон Сан-Марко на рис. 282 – самоквадрируемое (см. главу 19) множество и основан на двух инверсиях отображения x→3x(1−x).

Определяющий индекс в этих случаях выбирается из четырех (или, соответственно, двух) возможностей с помощью псевдослучайного алгоритма, примененного 64 000 раз. Несколько первых точек на рисунке опущены.

Области в окрестностях точек заострения и самопересечения заполняются чрезвычайно медленно.

VII СЛУЧАЙНОСТЬ

21 СЛУЧАЙ КАК ИНСТРУМЕНТ ДЛЯ СОЗДАНИЯ МОДЕЛЕЙ

Хотя фундаментальные разделы фрактальной геометрии имеют дело исключительно с детерминированными конструкциями, истинный смысл и практическая значимость этих разделов остается неочевидной до тех пор, пока мы не исследуем случайные фракталы. И наоборот, изучение фракталов углубляет понимание природы случайности – по крайней мере, мне так кажется.


Первый довод в пользу введения случайности хорошо знаком любому ученому, и тем не менее, он – наряду с прочими, менее общеизвестными замечаниями общего характера – заслуживает отдельного комментария в настоящей главе. В следующей главе нам откроются новые горизонты, и мы убедимся, что введение случайности обусловлено также причинами, специфичными для теории фракталов.

<X> ОЗНАЧАЕТ ОЖИДАНИЕ, А ВЕРОЯТНОСТЬ ОБОЗНАЧАЕТСЯ СОКРАЩЕНИЕМ PT

Чуть ли не в каждой дисциплине принято свое собственное, отличное от других, обозначение для ожидаемого значения переменной X. Мы в настоящем эссе будем придерживаться обозначения, принятого у физиков, <X>, преимущество которого заключается в собственных оригинальных скобках.

Пусть дана некая функция B(t) и ее приращение ΔB(t)=B(t+Δt)−B(t). Тогда величину <ΔB(t)> назовем дельта-средним, а величину <[ΔB(t)−<ΔB(t)>]2> - дельта-дисперсией.

СТАНДАРТНАЯ РОЛЬ СЛУЧАЙНЫХ МОДЕЛЕЙ

Вернемся к вопросу о протяженности побережья Британии. Как бы ни напоминала нам кривая Коха реальные географические карты, у нее есть один большой недостаток, с которым мы в почти неизменном виде сталкиваемся во всех ранних моделях реальных природных феноменов, рассмотренных в настоящем эссе. Ее элементы абсолютно идентичны между собой, а коэффициент самоподобия является частью масштаба и имеет вид

b−k, где b - целое число, т.е. 1/3, (1/3)2 и т.д.

Модель можно усовершенствовать, введя более сложные детерминированные алгоритмы. Такой подход, однако, не только слишком громоздок, но и обречен на неудачу, так как формирование любой