КулЛиб - Классная библиотека! Скачать книги бесплатно
Всего книг - 710963 томов
Объем библиотеки - 1390 Гб.
Всего авторов - 274040
Пользователей - 124956

Новое на форуме

Новое в блогах

Впечатления

medicus про Маш: Охота на Князя Тьмы (Детективная фантастика)

cit anno: "студентка факультета судебной экспертизы"


Хорошая аннотация, экономит время. С четырёх слов понятно, что автор не знает, о чём пишет, примерно нихрена.

Рейтинг: 0 ( 0 за, 0 против).
serge111 про Лагик: Раз сыграл, навсегда попал (Боевая фантастика)

маловразумительная ерунда, да ещё и с беспричинным матом с первой же страницы. Как будто какой-то гопник писал... бее

Рейтинг: 0 ( 0 за, 0 против).
medicus про Aerotrack: Бесконечная чернота (Космическая фантастика)

Коктейль "ёрш" от фантастики. Первые две трети - космофантастика о девственнике 34-х лет отроду, что нашёл артефакт Древних и звездолёт, на котором и отправился в одиночное путешествие по галактикам. Последняя треть - фэнтези/литРПГ, где главный герой на магической планете вместе с кошкодевочкой снимает уровни защиты у драконов. Получается неудобоваримое блюдо: те, кому надо фэнтези, не проберутся через первые две трети, те же, кому надо

  подробнее ...

Рейтинг: 0 ( 0 за, 0 против).
Влад и мир про Найденов: Артефактор. Книга третья (Попаданцы)

Выше оценки неплохо 3 том не тянет. Читать далее эту книгу стало скучно. Автор ударился в псевдо экономику и т.д. И выглядит она наивно. Бумага на основе магической костной муки? Где взять такое количество и кто позволит? Эта бумага от магии меняет цвет. То есть кто нибудь стал магичеть около такой ксерокопии и весь документ стал черным. Вспомните чеки кассовых аппаратов на термобумаге. Раз есть враги подобного бизнеса, то они довольно

  подробнее ...

Рейтинг: 0 ( 0 за, 0 против).
Stix_razrushitel про Дебров: Звездный странник-2. Тропы миров (Альтернативная история)

выложено не до конца книги

Рейтинг: 0 ( 0 за, 0 против).

9. Квантовая механика II [Ричард Филлипс Фейнман] (fb2) читать постранично


 [Настройки текста]  [Cбросить фильтры]

9. Квантовая механика II

Глава 11 РАСПРОСТРАНЕНИЕ В КРИСТАЛЛИЧЕСКОЙ РЕШЕТКЕ


§ 1. Состояния электрона в одномерной решетке

§ 2. Состояния определенной энергии

§ 3. Состояния, зависящие от времени

§ 4. Электрон в трехмерной решетке

§ 5. Другие состояния в решетке

§ 6. Рассеяние на нерегулярностях решетки

§ 7. Захват нерегулярностями решетки

§ 8. Амплитуды рассеяния и связанные состояния


§ 1. Состояния электрона в одномерной решетке

На первый взгляд вам может показаться, что обладающий небольшой энергией электрон с превеликим трудом протискивается через твердый кристалл. Атомы в нем уложены так, что их центры отстоят один от другого лишь на несколько ангстрем, а эффективный диаметр атома при рассеянии электронов составляет примерно 1E или около этого. Иначе говоря, атомы, если их сравнивать с промежутками между ними, очень велики, так что можно ожидать, что средний свободный пробег между столкновениями будет порядка нескольких анг­стрем, а это практически равно нулю. Следует ожидать, что электрон почти тотчас же влетит в тот или иной атом. Тем не менее перед нами самое обычное явление природы: когда решетка идеальна, электрону ничего не стоит плавно пронестись сквозь кристалл, почти как сквозь вакуум. Странный этот факт — причина того, что металлы так легко проводят электричество; кроме того, он позволил изобрести множество весьма полезных устройств. Например, благо­даря ему транзистор способен имитировать радиолампу. В радиолампе электроны движутся свободно через вакуум, в транзисторе они тоже движутся свободно, но только через кристал­лическую решетку. Механизм того, что проис­ходит в транзисторе, будет описан в этой главе; следующая глава посвящена применениям этих принципов в различных практических уст­ройствах.

Проводимость электронов в кристалле — один из примеров очень общего явления. Через кристаллы могут странствовать не только электроны, но и другие «объекты». Так, атомные возбуждения тоже могут путешествовать аналогичным способом. Явление, о котором мы сейчас будем говорить, то и дело возникает при изучении физики твердого состояния.

Мы уже неоднократно разбирали примеры систем с двумя состояниями. Представим себе на этот раз электрон, который может находиться в одном из двух положений, причем в каждом из них он оказывается в одинаковом окружении. Предположим также, что имеется определенная амплитуда перехода электрона из одного положения в другое и, естественно, такая же ампли­туда перехода обратно, в точности, как в гл. 8, § 1 (вып. 8) для молекулярного иона водорода. Тогда законы квантовой механики приводят к следующим результатам. У электрона возникнет два возможных состояния с определенной энергией, причем каждое состояние может быть описано амплитудой того, что электрон пребывает в одном из двух базисных положений. В каждом из состояний определенной энергии величины этих двух амплитуд постоянны во времени, а фазы меняются во вре­мени с одинаковой частотой. С другой стороны, если электрон сперва был в одном положении, то со временем он перейдет в другое, а еще позже вернется в первое положение. Изменения амплитуды похожи на движение двух связанных маятников.

Рассмотрим теперь идеальную кристаллическую решетку и вообразим, что в ней электрон может расположиться в неко­торой «ямке» возле определенного атома, имея определенную энергию. Допустим также, что у электрона имеется некоторая амплитуда того, что он перескочит в другую ямку, которая на­ходится неподалеку, возле другого атома. Это чем-то напоминает систему с двумя состояниями, но с добавочными осложнениями. После того как электрон достигает соседнего атома, он может перейти в совершенно новое место или вернуться в исходную позицию. Все это похоже не столько на пару связанных маят­ников, сколько на бесконечное множество маятников, связанных между собой. Это чем-то напоминает одну из тех машин (со­ставленных из длинного ряда стержней, прикрепленных к за­крученной проволоке), с помощью которых на первом курсе демонстрировалось распространение волн.

Если у вас имеется гармонический осциллятор, связанный с другим гармоническим осциллятором, который в свою оче­редь связан со следующим осциллятором, который и т.д..., и если вы создадите в одном месте какую-то нерегулярность, то она начнет распространяться, как волна по проволоке. То же самое возникает и в том случае, если вы поместите электрон возле одного из атомов в длинной их цепочке.

Как правило, задачи по механике легче всего решать на языке установившихся волн; это проще, чем анализировать послед­ствия отдельного толчка. Тогда появляется какая-то картина смещений, которая распространяется по кристаллу, как волна с заданной, фиксированной частотой. То же самое происходит с электроном, и по той же причине, потому что электрон описывается в квантовой механике похожими уравнениями.

Но