КулЛиб - Классная библиотека! Скачать книги бесплатно
Всего книг - 706104 томов
Объем библиотеки - 1347 Гб.
Всего авторов - 272715
Пользователей - 124641

Последние комментарии

Новое на форуме

Новое в блогах

Впечатления

medicus про Федотов: Ну, привет, медведь! (Попаданцы)

По аннотации сложилось впечатление, что это очередная писанина про аристократа, написанная рукой дегенерата.

cit anno: "...офигевшая в край родня [...] не будь я барон Буровин!".

Барон. "Офигевшая" родня. Не охамевшая, не обнаглевшая, не осмелевшая, не распустившаяся... Они же там, поди, имения, фабрики и миллионы делят, а не полторашку "Жигулёвского" на кухне "хрущёвки". Но хочется, хочется глянуть внутрь, вдруг всё не так плохо.

Итак: главный

  подробнее ...

Рейтинг: 0 ( 0 за, 0 против).
Dima1988 про Турчинов: Казка про Добромола (Юмористическая проза)

А продовження буде ?

Рейтинг: -1 ( 0 за, 1 против).
Colourban про Невзоров: Искусство оскорблять (Публицистика)

Автор просто восхитительная гнида. Даже слушая перлы Валерии Ильиничны Новодворской я такой мерзости и представить не мог. И дело, естественно, не в том, как автор определяет Путина, это личное мнение автора, на которое он, безусловно, имеет право. Дело в том, какие миазмы автор выдаёт о своей родине, то есть стране, где он родился, вырос, получил образование и благополучно прожил всё своё сытое, но, как вдруг выясняется, абсолютно

  подробнее ...

Рейтинг: +2 ( 3 за, 1 против).
DXBCKT про Гончарова: Тень за троном (Альтернативная история)

Обычно я стараюсь никогда не «копировать» одних впечатлений сразу о нескольких томах (ибо мелкие отличия все же не могут «не иметь место»), однако в отношении части четвертой (и пятой) я намерен поступить именно так))

По сути — что четвертая, что пятая часть, это некий «финал пьесы», в котором слелись как многочисленные дворцовые интриги (тайны, заговоры, перевороты и пр), так и вся «геополитика» в целом...

Сразу скажу — я

  подробнее ...

Рейтинг: +1 ( 1 за, 0 против).
DXBCKT про Гончарова: Азъ есмь Софья. Государыня (Героическая фантастика)

Данная книга была «крайней» (из данного цикла), которую я купил на бумаге... И хотя (как и в прошлые разы) несмотря на наличие «цифрового варианта» я специально заказывал их (и ждал доставки не один день), все же некое «послевкусие» (по итогу чтения) оставило некоторый... осадок))

С одной стороны — о покупке данной части я все же не пожалел (ибо фактически) - это как раз была последняя часть, где «помимо всей пьесы А.И» раскрыта тема именно

  подробнее ...

Рейтинг: +1 ( 1 за, 0 против).

Кризис аграрной цивилизации и генетически модифицированные организмы [Валерий Иванович Глазко] (fb2) читать онлайн


 [Настройки текста]  [Cбросить фильтры]
  [Оглавление]

В. И. Глазко Кризис аграрной цивилизации и генетически модифицированные организмы (ГМО)

Появление этой монографии было бы невозможно без поддержки, дискуссий и помощи Николая Бойко, искреннюю благодарность которому автор и выражает.

Предисловие

Человечество всегда предпочитало мифы, а не реальность. С мифами проще жить... Но со времени вторичного открытия законов Менделя наши представления о мире изменились самым радикальным образом. Примерно как после того как выяснилось, что земля не плоская, а круглая. Или после того, как Галилей объяснил, что земля вращается вокруг солнца, а не наоборот. После теории Дарвина, когда мы вдруг поняли, что мы не «венец творения», а все в этом мире родственники, наше мышление изменилось навсегда...

После выяснения биологической роли нуклеиновых кислот, открытия структуры молекулы ДНК, расшифровки генетического кода эти трансформации многократно ускорились, расширились по масштабам и углубились. Они вышли за пределы собственно естествознания, интегрировались в человеческую ментальноетъ, стали, наконец, одним из доминирующих факторов современной техногенной экономики и социальной эволюции общества.

Современные генные технологии, наряду с компьютерной техникой и информатикой, с полным правом можно объединить в категорию информационных технологий. Их влияние на будущее цивилизации очевидно. Зарождающиеся и уже существующие качественно новые информационные и энергетические связи делают современное общество, в том числе и производство, как бы единым организмом... Восприятие плюсов («социальное благо») и минусов («социальный риск»), проистекающих из развития современной фундаментальной науки и высоких технологий, настолько очевидно, что поделило мир на «золотой миллиард» (страны с высоким уровнем жизни и технологий) и страны третьего мира без науки и современных технологий, низкого уровня жизни и тяготеющих к принципу «назад к природе», опирающиеся только на свое прошлое и фактически не интересующиеся будущим своих детей, внуков и человечества в целом.

Кризис аграрной цивилизации

14 основных проблем, стоящих перед человечеством, или почему нужна современная биотехнология

Современная наука — продукт европейской культуры. Ее появлению человечество обязано трудам великих ученых — от Коперника до Галилея и Ньютона. Но водоразделом в науке послужила публикация в 1686 г. «Математических начал натуральной философии» Исаака Ньютона, в которых была изложена его система классической механики. Ньютон создал научную дисциплину, в течение двух последующих столетий служившую эталоном классической науки нового времени. Наука стала не только системой знания, но и сферой постоянной и весьма сложной творческой познавательной деятельности по его получению. Науки в этом качестве в прежние эпохи не существовало. В результате современное научное знание обладает как бы «двойной моралью». Во-первых, оно ценно само по себе. К науке обращаются, чтобы понять и объяснить. Во-вторых, ценность научного знания определяется его полезностью для человеческой деятельности. В зависимости от того, какой компонент преобладает, можно даже предсказывать судьбу государства. В качестве примеров можно привести лысенковщину в СССР или развитие евгеники в нацистской Германии.

Традиционная этическая отстраненность ученых привела к тому, что они рассматривают результаты своей деятельности как факты науки, полезные для ее развития безотносительно к социальным и духовным последствиям. Однако научное открытие не остается достоянием профессиональной сферы, а так или иначе выходит за ее пределы, становясь фактом духовной жизни и способствуя ее развитию или разрушению.

В биологии хорошо известно, что сохранение вида, в частности, млекопитающих, к которым принадлежит и человек, обеспечивается наличием двух врожденных инстинктов — самосохранения и продолжения рода. Они выработаны путем естественного отбора и включают множество разнообразных характеристик, спектр которых имеет свои особенности у каждого вида. Но есть в этом и основной герой, основа жизни — это ДНК и ее стабильность. Суть секрета — в устройстве молекулы ДНК, в ее двух комплементарных цепочках.

Возраст жизни на Земле — миллиарды лет. Это благодаря ДНК к нам, в сегодняшние  дни,   жизнь   пробилась  сквозь   многие   потрясения и катастрофы. Потрясшие Землю экологические катастрофы стерли с лица планеты динозавров, мамонтов и многие другие организмы. Следы их дошли до нас лишь в виде ископаемых. В куске каменного угля можно обнаружить отпечатки доисторического папоротника или окаменевшие раковины моллюска. В кусках янтаря, в смоле реликтовых деревьев, можно разглядеть «мумии» насекомых. Какой-нибудь запечатанный в янтаре комар являет собой удивительное зрелище. Неисчислимый ряд поколений отделяет его от современных сородичей; казалось бы, он должен разительно отличаться от своих собратьев, родившихся в постгеномную эру. Но этого нет. Комар все тот же: природа пронесла облик насекомого из глубин тысячелетий в наше время почти не измененным, осталось то, что делает комара комаром и отличает его от других видов. Различие, есть, но внешне они не так разительны, как количество лет, разделяющих представителей одного и того же вида, рода.

Как же природе удается из века в век репродуцировать, раз за разом повторять свои изделия? И не приближенно, оставляя лишь главное, не заботясь о деталях, — а творить словно бы под копирку миллионы лет, без ошибок и монстров-химер, добиваясь воспроизведения особенностей и даже самых мельчайших нюансов. Теперь мы знаем, что в фундаменте жизни лежит ДНК. Наследственность, изменчивость и отбор — вот основы, на которых держится жизнь на Земле и эволюция ее форм.

Время возникновения человека как вида оценивается по-разному, но, во всяком случае, не менее чем несколькими сотнями тысяч лет. Центром его происхождения принято считать Африку, далее последовали сложные этапы и пути его распространения по Земному шару. Для миграции человека было множество причин, ведущей из которых, возможно, являлось проявление инстинктов самосохранения и продолжения рода. Именно благодаря им человек, для своего выживания, научился создавать для себя искусственную среду обитания. Это позволило ему осваивать все новые регионы обитания. Очевидно, однако, что этот процесс сопровождался и существенными экологическими изменениями. Часто, захватывая новую область, человек настолько ее истощал, что возникала пустыня — например, знаменитая пустыня Сахара. Это приводило к дальнейшей миграции человека в пока более плодородные земли. Хозяйственная деятельность человека, в конечном итоге, приобрела роль геологического фактора в глобальном масштабе.

Одна из особенностей человеческого сознания состоит в том, что нам свойственно придавать приоритетное значение той информации, которая касается нас самих или наших близких. В то же время информация о событиях, несущих угрозу жизни, если эта угроза как-то отдалена во времени в будущее или носит вероятностный характер, в индивидуальном восприятии кажется менее достойной внимания. Например, высокая вероятность наступления преждевременной смерти мало кого отвратила от курения табака, зато какую бурю эмоций способно вызвать изменение вкуса привычной еды или технологии ее получения. Хороший пример — это дискуссия по поводу генетически модифицированных организмов (ГМО).

Во второй половине XX в. наступила новая стадия развития человечества — стадия глобализации. Человечество впервые в истории столкнулось с глобальными опасностями и угрозами, которые затрагивали все человечество и весь мир, а не конкретную страну и конкретную нацию, область и племя — ядерная катастрофа, смертельные болезни, связанные с необратимым нарушением иммунной защиты организма (СПИД, лихорадка Эбола и т.д.), терроризм, техногенные катастрофы — так что разные народы были вынуждены прийти к осознанию своей единой планетарной судьбы.

Комплекс животрепещущих глобальных проблем потребовал создания ряда крупных международных организаций (ООН, ЮНЕСКО, НАТО и т.п.) и еще невиданного в истории по масштабам международного сотрудничества.

Когда говорят о современной экологической ситуации, то в первую очередь говорят о том, что на слуху, например, антропогенных изменениях климата, относя к ним и современное потепление, вызванное ростом концентрации СО2 в атмосфере. Глобальное потепление — это климатическая проблема, а изменения среды — уже геоэкологическая проблема, связанная с эволюцией биосферы.

Необходимо подчеркнуть, что вся история человечества, его распространения по земному шару, сопровождались экологическими катастрофами.

Считается, что за 12-10 тыс. лет до н.э. произошло приручение азиатского горного безоарова козла (Capra aegargus), ставшего предком козы в Восточном Средиземноморье (Загрос или Восточная Анатолия). К этому времени относится и первая экологическая катастрофа — опустынивание пастбищ вследствие перевыпаса животных.

За 7-4 тыс. лет до н.э. человек начал осваивать металл. В Месопотамии и в долине Нила возникли первые классовые общества. Происходит первое великое общественное разделение труда между оседлыми земледельцами, для которых животноводство играло подсобную роль, и скотоводческими пастушескими племенами. Земледелие привязало оседлые племена к земле, тогда как животноводы могли и должны были кочевать со стадами.

Это время возникновения следующих экологических кризисов, связанных с развитием поливного земледелия — засоления и опустынивания пахотных земель.

Экологические катастрофы, вызванные деятельностью человека, продолжались и в более близкие к нам времена. Например, в результате брака халдейского правителя Навуходоносора с египетской царицей Никотрис (582 г. до н.э.) приехавшие вместе с царицей египетские советники перенесли свои приемы мелиорации с Нила на Евфрат, что быстро вызвало засоление почв. Исправить последствие пагубной мелиорации уже никому не удалось. (Воронцов, 1999).

Можно выделить несколько основных глобальных показателей того, что современное человечество вошло в период глобального экологического, или первого ноосферного кризиса.

1. Геология. Геохимические изменения состава атмосферы и гидросферы — катастрофический рост концентрации в воздухе, почве и воде радионуклидов, тяжелых металлов и в особенности искусственных химических соединений (ксенобиотиков), с которыми живые организмы ранее не встречались.

2. Почва. Почвы формируются в результате совокупной деятельности многих факторов на протяжении сотен и тысяч лет. Черноземные почвы формировались на протяжении последних 10 тыс. лет в рамках ныне почти полностью исчезнувшего степного биоценоза умеренного пояса. Скорость техногенной деградации почв, главного кормильца населения Земли, на порядок превосходит процессы их восстановления. За каждое десятилетие только в результате урбанизации утрачивается около 2% пашни. Сейчас доля земель, используемых в сельском хозяйстве, изменяется от менее 10% в Финляндии до более 70% в Венгрии, Ирландии, Украине и Великобритании. Лесопокрытые территории занимают от 6% в Ирландии до 66% в Финляндии. Основная роль почв в функционировании экосистем определяет значение мер по их защите от неприемлемых антропогенных воздействий. Эта проблема стала особенно острой ввиду интенсивных процессов деградации почв, особенно потери плодородия (снижение концентрации гумуса). 115 млн. га почв Европы подвержены эрозии, что обусловливает потерю их плодородия и загрязнение водных бассейнов. На 75 млн. га лесных почв превышены критические уровни загрязнения, определяющие начало процесса закисления. Следствиями неумеренного использования минеральных удобрений стал их смыв речным стоком и интенсификация эвтофицирования, а также загрязнение питьевой воды нитратами.

3. Ландшафты. В Европе из-за интенсификации сельского хозяйства, активного развития городов и транспортных систем идут не только процессы изменения и деградации, но и исчезновения ландшафтов. Лишь 6% территории суши Европы относится к категории охраняемых земель, но даже и в этих случаях их юридический статус определен нечетко. Обсуждение мер по охране фауны и флоры обычно базируется на выделении семи групп видов, причем особое внимание уделено видам, внесенным в Красную книгу

4. Города. Сейчас в них проживает около 2/3 населения Европы, хотя суммарная площадь городов составляет около 1%, по отношению к территории суши континента.

5. Вода. Чистая вода на Земле — проблема. Почти везде на планете идут кислотные дожди. Водная фауна третьей части всех озер мира уже погибла. В реки втекают потоки загрязненных стоков. Для очищения их требуется 50-100 кратное разбавление чистой водой, т.е. 75-150 тыс. км', в то время как объем мирового речного стока не превышает 45 тыс. км3. Идет интенсивное загрязнение подземных артезианских вод и озер, даже таких гигантских, как Байкал и Ладога.

Внутренние воды. Анализ состояния рек, озер и подземных вод показал, что в среднем по Европе ежегодно утрачивается около 15% возобновляемых водных ресурсов. Распределение водопотребления происходит следующим образом: 53% — (промышленность, 26% — сельское хозяйство, 19% — бытовое водопотребление. 65% населения обеспечивается водой из подземных источников, в результате чего для многих из них типичен запороговый уровень эксплуатации и снижающийся уровень качества вод. На большей части континента нарушены стандарты ЕС по ПДК нитратов и пестицидов в питьевой воде. Широко распространилась антропогенная эвтрофикация рек и озер. Для большей части северных стран характерен высокий уровень закисления водоемов.

Моря. В шести основных европейских морях (Средиземное, Черное, Баренцево, Норвежское, Балтийское, Северное) и в Северной Атлантике отсутствует эффективное управление процессами на водосборах; загрязнены прибрежные зоны; идет процесс эвтрофикации; существуют конфликтные ситуации в использовании ресурсов прибрежных зон; происходит заселение новыми видами организмов; отсутствует контроль над различными видами деятельности в прибрежных зонах; идет чрезмерно интенсивная эксплуатация морских ресурсов; возможно повышение уровня моря в результате глобального потепления.

Данные наблюдений указывают на то, что все моря (за исключением субарктических) подвержены эвтрофикации. Концентрация нитратов в прибрежных водах Черного и Азовского морей возросла в 2-3 раза. Следствием недостаточного контроля их содержания в прибрежных зонах Балтийского, Черного и Каспийского морей является их сильное загрязнение. Загрязнение Северного моря оказало губительное воздействие на ряд представителей его фауны. В Средиземном море оказались под угрозой исчезновения некоторые эндемичные виды.

6. Леса. За XX в. было вырублено 40% лесов, остававшихся на планете. Площадь амазонской сельвы уменьшается в год на 1.25%. За год здесь исчезает 27 тыс. видов организмов (3 вида в час). По расчетам специалистов, при сохранении современных темпов выруба лесов они исчезнут к середине XXI в. Ясно, что индикаторы возобновляемых природных ресурсов биосферы либо перешли, либо близки к переходу в невозобновляемые.

7. Атмосфера. Если исчезнут леса и болота, поставляющие 30% кислорода, и будет продолжаться загрязнение океана пленкой нефти, убивающей планктонные организмы, вырабатывающие 70% кислорода планеты, то содержание его в атмосфере начнет резко сокращаться. Уже сейчас некоторые страны, в том числе США, и некоторые области России, как, например, Кемеровская, потребляют кислорода больше, чем производится на их территории растительностью.

Динамика качества воздуха в Европе за последние годы была противоречивой. С одной стороны, произошло уменьшение выбросов сернистого газа, а с другой — усилилось загрязнение атмосферы другими газами. Для большинства европейских городов характерно возникновение не реже раза в год кратковременных эпизодов загрязнения, когда их уровень превосходит стандарты, установленные Всемирной организацией здравоохранения (ВОЗ). Более 100 млн. жителей Европы подвергаются воздействию кратковременных повышений концентрации приземного озона. Серьезной проблемой является повышение концентрации парниковых газов и спад общего содержания озона. На более чем 60% территории Европы превышены критические уровни загрязнений, ведущих к закислению окружающей среды.

8. Технологическая готовность государств и отдельных социальных групп разделенного мира к самоуничтожению цивилизации. Взрывная мощность накопленного ядерного оружия эквивалентна 1.2 млн. хиросимских бомб и в 1636 раз превышает таковую всех войн истории.

Огромны запасы химического оружия. Террористические акты в США 11 сентября 2001 года снова вызвали к жизни сомнение относительно тезиса о конце противостояния связи с утверждением, что мы стали свидетелями «столкновения цивилизаций» Запада и Востока. После «холодной» (третьей мировой), возможно, началась сразу четвертая необъявленная мировая война, против «золотого миллиарда». Однако не следует забывать, что в основном терроризм формируется внутри государств, которые остались на периферии современного научного прогресса, в которых проблема голода наиболее остра и, в этой связи, совершенно иное отношение к «стоимости» человеческой жизни. Очевидно, что в государствах, в которых высокая детская смертность, низкий уровень продолжительности жизни является правилом, формируется иное представление о допустимости убийств для достижения определенных целей, чем в более благополучных государствах. Когда массовая гибель людей от голода и болезней является нормой жизни, очевидно, что это становится естественной питательной средой для терроризма. Кроме того, современный терроризм четко указывает на то, что наука и технология, которые порождают современный мир, сами по себе являются уязвимыми ключевыми точками нашей цивилизации. Самолеты, небоскребы и биолаборатории — все эти символы современности — были превращены в оружие одним прикосновением злонамеренной изобретательности.

Все научные открытия стимулируются нашими желаниями, могут быть как конструктивными, так и деструктивными. По человеческому опыту, разрушительные открытия более эффективны: человечество, не разобравшись в себе, не научившись излечивать многие заболевания, научилось уничтожать народы...

9. Наличие бактериологического оружия. Зона поражения ими на два-три порядка превышает подобную территорию для ядерного оружия. Производство его дешево и может вестись скрытно, практически на квартире. Формы его разнообразны. Меры медицинской защиты сложны и всегда будут запоздалыми. В силу этого в будущих войнах противниками великих ядерных держав вполне могут стать малые страны и даже банды преступников и фанатиков. Возникновение биотерроризма как вполне реальной угрозы указывает на необходимость большего политического контроля над применением науки и современных технологий и изменения нашего менталитета.

10. Психоинформационный шок человечества. Имеются данные о воздействии на живые организмы электронно-магнитного излучения (ЭМИ), а также инфра-, ультразвукового и СВЧ-излучения — электронного смога. Их эффекты, как предполагают, влияют на деятельность мозга и эндокринной системы, могут вызывать психические расстройства.

11. Биоразнообразие. По расчетам, основанным на скорости вымирания видов в наше время, половины ныне живущих на Земле видов мы можем лишиться всего за 40-50 лет. Естественные эволюционные процессы, очевидно, не способны будут компенсировать столь катастрофическое уменьшение видового разнообразия, что приведет к глубокой деградации большинства экосистем.

Из анализа палеонтологических данных следует, что среднее время существования вида составляет от 1 до 10 млн. лет. Нормальный темп вымирания, происходящего в процессе эволюционного развития форм жизни и с избытком компенсируемого возникновением новых видов, составляет примерно 10-5% в год, возрастая при массовых вымираниях на два порядка. Достаточно привести современный темп вымирания, составляющий 0,5% видов в год. то есть в 500-1000 раз превосходящий катастрофические вымирания пермского и мелового периодов, чтобы понять, что сохранение существующей тенденции неизбежно приведет к кардинальным изменениям всей биосферы, к наступлению новой геохронологической эры, «посткайнозойской», или «антропогенной». Она будет отличаться от нашей не только составом животного и растительного мира, но и всем комплексом физико-химических условий — составом атмосферы, тепловым режимом, распределением осадков и многими другими столь важными для жизни людей характеристиками среды.

Известный американский эколог Эрлих считает, что последствия потери биоразнообразия для человечества сравнимы с вероятными последствиями мировой ядерной войны и «ядерной зимы», что будет означать конец человеческой цивилизации в ближайшие 100 лет. Кроме того, интенсификация процессов эволюции обязательно приведет к появлению большого числа новых форм жизни, особенно наиболее быстро эволюционирующих групп с коротким жизненным циклом микроорганизмов, простейших, низших червей, насекомых. Таким образом, не сумев сохранить видовое разнообразие жизни, человечество станет заложником стихийных эволюционных процессов. Познание причин вымирания одних видов и возникновения других, разработка и реализация разных способов сохранения современных видов животных, растений, грибов и микроорганизмов, которые создают единственно пригодную для жизни людей природную среду — путь к предотвращению опасного развития этой стороны экологического кризиса.

Высокий уровень видового разнообразия жизни — одно из необходимых условий сохранения основных характеристик природной среды, единственной среды обитания человека. Современный газовый состав атмосферы, системы самоочистки воды, механизмы взаимодействия множества видов от микроорганизмов до крупных млекопитающих, включая человека, сложились в процессе длительной эволюции постепенно усложнявшихся экосистем. Основные процессы в биосфере, от которых зависит возможность существования человека — биозависимые процессы.

Катастрофическое падение видового разнообразия жизни на Земле, в сотни и тысячи раз более интенсивное, чем те, которые характеризовали наиболее значительные известные науке биосферные катастрофы — пермскую и меловую, угрожает через несколько десятилетий стать необратимым, что сделает человечество заложником стихийных эволюционных процессов.

Еще один практически невозобновляемый ресурс — генофонд биосферы. Ежегодные потери множества видов растений и животных не компенсируются эволюционным процессом, скорость которого на 3-4 порядка меньше, чем нынешняя скорость вымирания видов. И если другие невозобновляемые ресурсы можно хотя бы экономить, например, за счет вторичной переработки, введения новых, ресурсосберегающих технологий, частично заменять одни ресурсы другими, то генофонд нельзя «сэкономить»), его можно лишь сохранять или терять, причем мы уже хорошо знаем, что эти потери необратимы.

В качестве примера: в тропиках есть области и отдельные растения, которые могли бы служить музеями эволюции генов и метаболических путей. Эти области имеют наибольшее биологическое разнообразие по сравнению с другими районами мира: 44 тыс. видов на 1 га — рекорд, установленный во влажных тропических лесах Венесуэлы (ясно, что в холодных регионах показатели гораздо скромнее).

Сегодня мы в состоянии, проследив метаболический путь какого-либо соединения, перенести его в другое растение. Это вселяет надежду на сохранение специфики метаболических путей и, как следствие, — биоразнообразия. Изучая это разнообразие и способствуя его сохранению, мы сможем убедить общество в необходимости генной инженерии — хотя бы для защиты лесов, степей и видов, лежащих в основе растительного разнообразия.

12. Агрохимия. Особую опасность для чистоты природных вод и состояния экосистем представляет применение на полях различных ядохимикатов и избыточных доз минеральных удобрений. Каждый год на миллионах гектар распыляются инсектициды, фунгициды, гербициды — яды, применяемые для подавления насекомых, грибковых заболеваний растений, сорняков. Все они очень токсичны. Многие из них химически очень устойчивы, а некоторые, попадая в почву и проходя там ряд химических превращений, становятся еще более ядовитыми. Мигрируя вместе с грунтовыми водами, эти вещества (их общее название — пестициды) рано или поздно попадают в реки и озера, проникают в подземные воды. В 70-е годы в штате Калифорния более 50% всех артезианских скважин были закрыты из-за того, что в подземных водах в опасном количестве появились пестициды.

В ряде районов мира занятие сельским хозяйством стало одним из видов деятельности, наиболее опасных для здоровья людей именно из-за насыщенности ядохимикатами природной среды обитания сельских жителей. Невозможно изобрести такие очистные сооружения, которые могли бы предотвратить попадание в водоемы ядохимикатов, рассеиваемых по огромным территориям сельскохозяйственных угодий. Поэтому дальнейшее совершенствование системы защиты растений должно быть ориентировано не на еще большее усиление химической защиты, а на переход к защите биологической.

13. Сверхпотребление. Система сверхпотребления «золотого миллиарда» грозит катастрофой всему человечеству (основной вывод Всемирной конференции по устойчивому развитию представителей 195 стран в г. Йоханнесбурге, ЮАР, 26 августа — 4 сентября 2002 г.). Известно, что глобальные социально-экономические и экологические проблемы требуют и глобальных ответов, основанных на достижениях науки и техники. В их числе дефицит продовольствия, питьевой воды и возможные изменения климата. Уже сегодня, больше 1 млрд. человек не имеют доступа к необходимому количеству и качеству воды, а около 2 млрд. человек голодает. Современные проблемы — экологические, политические, социальные, бытовые — в конечном итоге представляют собой различные аспекты конфликтности человеческого существования, в основе которой лежит конкуренция между отдельными людьми, государствами, религиями, технологиями, человеком и природой, часто принимающая форму взаимного истребления конкурирующих сторон. Ученые, политические деятели и общество должны взаимодействовать, чтобы реализовать результаты новых знаний в лучшей «среде обитания» и «качестве жизни». Политики должны понять свою ответственность за предотвращение необратимых отрицательных последствий разрушения и загрязнения окружающей среды. Все это и обусловливает смену парадигм и переход к адаптивной системе жизнеобеспечения. Необходима смена цивилизациокных координат, социальная ориентация экономики; социальная ответственность; сращивание экономики с экологическими, национальными, этническими, культурологическими и другими системами.

Инстинкт самосохранения и увеличение плотности населения приводил к все ускоряющемуся развитию методов создания искусственной среды обитания и получения продуктов питания. При этом имелась иллюзия о бесконечности природных ресурсов и необходимости только научиться их полноценно использовать. Известен лозунг начала 20 века о том, что мы не можем ждать милостей от природы... Это реализовалось в технической революции конца XIX — начала XX веков. В XX веке началась эпоха химизации сельского хозяйства. Наконец, к 60-м годам XX века агрессивное отношение человека к окружающей среде привело к постепенной глобализации экологических изменений, даже к изменениям климата. Может быть, именно инстинкт самосохранения и привел к мощному развитию в этих годах космических исследований.

Однако ничего особо утешительного они не принесли. Стало очевидным, что при столь стремительных экологических изменениях человек не сможет успеть найти себе новую среду обитания на другой планете, то есть поступить так, как он поступал обычно в соответствии со своей биологически запрограммированной стратегией поведения: истощив один регион — мигрировать в следующий. Проблема обострилась еще и тем, что в результате техногенной революции, химизации сельского хозяйства и медицины, среда обитания человека оказалась насыщенной их отходами, различными генотоксическими и мутагенными веществами, для которых отсутствуют государственные границы и различия в уровнях жизни различных слоев населения. Появились новые болезни, а старые — приобрели новые качества, их возбудители уже несут устойчивость к широкому спектру антибиотиков. Насыщенность среды обитания продуктами искусственного химического синтеза, ксенобиотиками, привела к массовым изменениям работы иммунной системы у человека. Широкое распространение получили аутоиммунные заболевания. Принято считать, что около 80% онкологических заболеваний человека обусловлено загрязнением окружающей среды генотоксическими агентами и процент их каждый год последовательно нарастает.

Настало время, когда возможность самосохранения человека как вида путем агрессивного изменения окружающей среды становится принципиально нереальной. Где же выход?

Один из таких выходов — не бороться с природой, а подражать ей. В принципе, всю жизнь человек пользовался этим путем, создавая новые формы животных и растений, нужные для него. Всю историю человечества, начиная с одомашнивания первого животного, первого растения, происходила их совместная, сопряженная эволюция. Проблема заключалась только в том, что скорость этой эволюции сельскохозяйственных видов была много меньше, чем нужно человеку.

Крайне остро этот разрыв стал ощутим именно в 20-м веке. Тут и появилась эта новая задача — для того, чтобы выжить, человечеству нужно научиться управлять скоростью эволюции живых организмов. А как это сделать?

Подсмотреть, как эволюционируют виды в живой природе, и попробовать использовать ее приемы. С постановки такой задачи и начала развиваться генная инженерия, методы получения генетически модифицированных организмов.

Генетика оформилась как наука в начале XX века после переоткрытия законов Менделя. Бурный вековой период ее развития ознаменован в последние годы расшифровкой нуклеотидного состава геномной ДНК десятков видов вирусов, бактерий, грибов и вслед за ними ряда многоклеточных организмов — растение арабидопсис (Arabidopsis thaliana), нематода (Caenorhabdltis elegans), дрозофила, человек. Полным ходом идет секвенирование ДНК хромосом важных культурных растений — риса, кукурузы, пшеницы.

Кроме этого появилась и бурно развивается генная терапия наследственных болезней, производство генетически измененных форм растений, успешное соматическое клонирование млекопитающих, появление молекулярной палеогенетики — впечатляющие реалии науки. ДНК-технология и биотехнология с ясностью их методов, задач и публичной эффектностью успехов трансформировали облик генетики и современного общества.

Генная инженерия по своей сути не является чем-то качественно отличающимся от естественных процессов, чем-то чужеродным для живых объектов, как, например, получение искусственно синтезированных химических соединений, отсутствующих в природе, а, наоборот, представляет собой повторение подсмотренных в природе приемов. Получение трансгенных растений ныне превратилось в довольно рутинную технологию для решения практических задач, которыми занимаются как научные учреждения, так и коммерческие фирмы.

В настоящее время у 120 видов растений существуют трансгенные формы. Разрешено использование трансгенных сои, кукурузы, хлопка, рапса, картофеля, томатов, свеклы, тыквы, табака, папай, льна; заканчиваются испытания трансгенного риса и пшеницы. Трансгенные растения выращиваются в 14 странах мира — США, Китае, Аргентине, Канаде, Австралии, Мексике, Испании, Франции, Южной Африке, Португалии, России и Румынии. В 2005 г. под ними была занята площадь около свыше 90 млн. га. Площадь под трансгенными формами растений увеличилась за десять лет на два порядка.

С использованием трансгенных растений были решены такие проблемы, как гербицидоустойчивость, устойчивость к насекомым, к вирусам, к грибковым и бактериальным заболеваниям, регуляция сроков созревания, повышение общей продуктивности, съедобные вакцины. Из выращиваемых сегодня трансгенных растений 71% устойчивы к гербицидам, 22% — к вредителям и 7% — к гербицидам и вредителям (в основном соя, кукуруза, хлопок, рапс).

Идет поиск подходов к резкому повышению продуктивности растений. Считается, что трансгеноз у растений и животных — наиболее перспективная биотехнология для решения продовольственной и медицинской проблем на ближайшее десятилетие. Трансгенные животные — козы, овцы, свиньи, коровы — используются для секреции под промоторами «генов молока» высокоактивных биологических веществ для медицины и фармакологии. Уже прошли или проходят лицензирование и поступили или в скором времени поступят на рынок полученные через трансгенных животных антитрипсин, применяемый при легочных заболеваниях, антитромбин III для предотвращения инфарктов и инсультов, факторы свертываемости крови, белок С, обладающий защитными функциями, и ряд других.

Так как трансгенные растения устойчивы к болезням и вредителям, то не исключается повышение устойчивости самих возбудителей болезней и тех же насекомых-вредителей, то есть их коэволюция. Это вторая проблема, последствия которой необходимо предвидеть. Возможно, что, создавая устойчивость у растений, мы стимулируем процесс отбора более устойчивых возбудителей и вредителей. Естественно, что трансгеноз вызывает весьма ощутимые последствия, которые нужно тщательно изучать.

Если внимательно присмотреться, то можно заметить, что все в нашей жизни и чуть ли не все технологические чудеса основаны, в конечном счете, на достижениях фундаментальной науки, то есть на вроде бы не имеющих явных прикладных аспектов результатах, которые интересны разве что для окончательно оторвавшихся от жизни и от народа теоретиков. Но как оказалось, вчера — отвлеченный, сегодня — самый что ни на есть прикладной.

Новое достижение геномики — науки, изучающей структуры и функции геномов человека, животных и млекопитающих: удалось найти удивительно изящный и эффективный подход к изучению и пониманию жизни. Главное, что инженерный подход к сборке клетки почти ничем не отличается от сборки компьютера. Во-первых, нужно иметь схему материальной «начинки» прибора и схему его работы — этим занимается генная инженерия и ДНК-технология. Принцип «сделать, чтобы понять» обычно работает на достаточно простых устройствах, содержащих минимальное количество деталей. Одна из простейших биологических машин, выявленных генетиками — это одноклеточный микроорганизм микоплазма.

При прогнозировании последствий использования новых технологий необходимо исходить из существования двух основных предпосылок развития опасных природных явлений: исторической (эволюционной) и антропогенной. В основе первой предпосылки лежат эволюционные процессы развития Земли, приводящие к непрерывной реорганизации вещества в твердой, жидкой и газообразной оболочках Земли с выделением и поглощением энергии, изменению напряженно-деформированного состояния земной коры и взаимодействия физических полей различной природы. Происходящие процессы лежат в основе глобальной геодинамики Земли и развития эндогенных, экзогенных, гидрологических и атмосферных явлений.

Сложные системы организованы иерархически. Сама часть может быть целым, если она состоит в свою очередь из более мелких частей на лежащем ниже уровне организации мира. Часть может быть сложнее целого (по своему поведению, по спектру возможных форм), если она имеет более высокий показатель нелинейности по сравнению с целым. Человек сложнее социальной группы или общества, ибо его нелинейность выше. И вместе с тем именно человек строит и перестраивает себя в основном из прошлого. Из элементов памяти, возобновляя процессы по старым следам, встраивая крупные блоки прошлого в настоящее и погружаясь в дорогое и памятное ему прошлое, он прорывается в желаемое будущее.

Современные проблемы — экологические, политические, социальные, бытовые — в конечном счете представляют собой различные аспекты конфликтности человеческого существования, в основе которой лежит конкуренция между отдельными людьми, экономическими образованиями, государствами, этносами, религиями, технологиями, человеком и природой, постоянно или периодически принимающая форму взаимного истребления конкурирующих сторон.

Эта форма, впрочем, считается «нецивилизованной». Можно подумать, что цивилизация смягчает конкуренцию. В то же время конкуренция признается — сейчас практически единодушно — двигателем прогресса и, следовательно, механизмом развития цивилизации. Это лишь один из поверхностных аспектов противоречивости современной культуры. Современные конкурентные отношения в восприятии новых достижений молекулярной биологии, связанные с созданием и распространением генетически модифицированных организмов, по-видимому, являются источником развития аграрной цивилизации, всего человечество в целом.

Изложение некоторых ключевых моментов развития техники получения генетически модифицированных организмов и их использования представлено ниже.

Краткий исторический очерк развития биотехнологий в аграрной цивилизации

Магистральная линия истории, приведшая к генетической инженерии как технологии управления процессом эволюции, на значительном временном интервале практически совпадает с историей генетики. Именно тогда, когда человечество создало инструментарий, позволяющий конструировать и создавать новые формы жизни, оно осознало не только собственное могущество и опасность его использования в «неразумных» целях». Поэтому этот раздел в значительной мере посвящен истории становления генетики — теоретического фундамента современной биотехнологии.

С того времени, как (приблизительно 10 000 лет назад) человек перешел от охоты и собирательства к скотоводству и земледелию, он, в сущности, радикальным образом сменил унаследованную от предков стратегию выживания в этом мире. Отныне он, сначала интуитивно, а затем — осознанно, стремится преобразовать свою среду обитания («экологическую нишу») в соответствии с собственными потребностями и интересами или своими представлениями о них (которые далеко не всегда не всегда совпадают друг с другом). Это означает, что человек постепенно берет под свой контроль ход глобального процесса эволюции, состоящий из трех компонент: эволюцию неживой природы, развитие жизни и историю человеческой цивилизации. Первым шагом на этом пути стало доместикация и создание искусственных экологических систем — агробиоценозов. Примерами последних могут служить пшеничное поле и пастбища скота.

Но вначале человечество располагало возможностями крайне незначительной модификации свойств и признаков уже существующих в природе элементов экологических систем, т.е. биологических видов. И только к концу 2 тысячелетия н.э. были созданы технологии, позволяющие создавать и перестраивать экологические системы, конструируя их из элементов (организмов) с заранее заданным произвольным наборов свойств. Эти технологии и получили название генетическая инженерия, биотехнология. (Вероятно, правильнее и точнее было бы сказать — генетическая и экологическая инженерия).

Ситуация с биотехнологиями напоминает историю с героем пьесы Мольера «Мещанин во дворянстве», который внезапно обнаружил, что всю жизнь говорил прозой и сам об этом не знал. Так и мы достаточно часто забываем, что биотехнологии человечество начало использовать и развивать с момента одомашнивания растений и животных. Ниже представлен краткий список важнейших биотехнологических событий.

VIII тыс. до н.э — первые культурные растения и домашние животные; начало возделывания картофеля для употребления в пищу.

VI тыс. до н.э — природная генная инженерия, создание мягкой пшеницы

II тыс. до н.э. — использование дрожжей для получения вина, пива и дрожжевого хлеба и кефира.

500 до н.э. — первый антибиотик (соевый творог) используют для лечения ожогов (Китай).

100 н.э. — первый инсектицид (Китай).

1590 — изобретение микроскопа.

1663 — открытие клеток (Р. Гук).

1675 — открытие бактерий (А.Певенгук).

1700-е годы — натуралисты идентифицируют растения-гибриды.

1820 — изложение К. Нассе закона наследования гемофилии.

1835-1855 — гипотезы о клеточном строении организмов (Т. Шванн) и о том, что «любая клетка происходит от клетки».

1857 — открытие бактериальной природы брожения (Л. Пастер), зарождение микробиологии.

1859 — опубликована теория эволюции (Ч. Дарвин).

1861 — Луи Пастер разрабатывает технологию пастеризации

1865 — Грегор Мендель, отец современной генетики, экспериментирует с бобовыми растениями и приходит к выводу, что существуют неизвестные на тот момент частицы, позднее получившие название гены, которые передают признаки от поколения к поколению; формулировка г. Менделем основных правил наследственности.

1869 — открытие И. Мишером нуклеиновых кислот в ядрах клеток.

1875 — первое описание О. Гертвигом слияния яйцеклетки и спермия (у морских ежей).

1870-1890 — получены первые гибриды кукурузы и хлопчатника, обладающие новыми свойствами; первые удобрения — для повышения урожайности стали вносить фиксирующие азот бактерии.

1878 — первое оплодотворение In vitro (Л. Шенк).

1902 — появление гипотезы В. Саттона и Т. Бовери о локализации генов.

1910 — первые работы Т. Моргана по наследственности плодовой мушки дрозофилы,    первоначальная    формулировка    хромосомной теории наследственности.

1922 — американские фермеры закупают гибридные сорта кукурузы.

С 1930 по 1985 год наблюдается повышение урожайности пшеницы на 600 процентов.

1919 — появился термин «биотехнология».

1925 — открытие мутагенного действия рентгеновского излучения (Г. Надсон, С.Г. Филиппов, г. Меллер, Л. Стаплер).

1926 — публикация результатов исследования С.С. Четверикова по генетике и эволюции популяций в природе, согласование теории мутаций с теорией естественного отбора, раскрытие ролислучайностей в эволюции.

1927 — появление матричной гипотезы воспроизводства биополимеров Н.К. Кольцова.

1928 — в плесени обнаружен пенициллин, обладающий антибактериальными свойствами (Д.Флеминг); впервые использован метод выделения эмбрионов для получения гибридов, зарождение гибридизации; впервые получены фертильные гибриды от растений разных родов: редиса и капусты (ПД. Карпеченко). Работы Ф. Гриффита по генетической трансформации микроорганизмов.

1930 — начало исследований Е. Бауэра и В.В. Сахарова по химическому мутагенезу. Впервые принят закон о патентовании продуктов селекции растений (США).

1933 — получены первые гибриды кукурузы, предназначенные для коммерческого использования (США).

1937 — издание книги Ф.Г. Добржанского «Генетика и происхождение видов» (синтетическая теория эволюции, связь теории естественного отбора с данными о популяционно-генетической изменчивости).

1938 — первое использование термина «молекулярная биология», первая публикация в журнале «Nalure» результатов рентгеноструктурного анализа нуклеиновой кислоты.

1941 — первая работа по биохимической генетике, использование биохимии в генетике; результаты Дж. Бернала по рентгеноструктурному анализу вируса табачной мозаики.

1942 — начато массовое производство пенициллина.

1943 — формулирование основополагающих принципов ДНК-технологии (Э. Шредингер): уподобление наследственного материала кодированному сообщению и открытие возможности переноса генов из одного организма в другой.

1944 — ученые подтверждают, что ДНК, присутствующая в ядре любой клетки, является субстанцией, отвечающей за передачу наследственной информации и содержит ключи к нашему прошлому, настоящему и будущему. Первое исследование химической природы вещества, передающего наследственные признаки. Показано, что ДНК несет генетическую информацию.

1945 — работа С. Пурии о мутациях у бактериофагов, давшая модель для генетических исследований на молекулярном уровне.

1946 — издание книги И.И. Шмальгаузена «Факторы эволюции».

1947 — открытие конъюгации (слияния) клеток у кишечной палочки, получение доказательства ее обусловленности генетическими факторами.

1948 — рождение теленка от искусственно оплодотворенной коровы.

1949 — открытие П. Полингом генетической природы серповидно-клеточной анемии, ставшей классической моделью наследственных заболеваний.

1950 — открытие Э. Чаргаффом нуклеотидного состава ДНК.

1951 — работы Л. Полинга по спиральным структурам в белках; определение Ф. Сенгером химического строения инсулина; первые работы Б. Макклинток по «прыгающим» генам.

1952 — первое клонирование (из ядра клетки зародыша лягушки, пересаженного в яйцеклетку лягушки, получено взрослое животное).

1953 — Джеймс Уотсон и Фредерик Крик открывают структуру ДНК в виде двойной спирали. Публикация в журнале «Nature»

1958 — ДНК впервые синтезирована в лаборатории.

1961 — зарегистрирован первый биопестицид (Bacillus thuringiensis). 1963 — получены новые сорта пшеницы, увеличивающие урожайность на 70% (Норман Борлоуг); начало «зеленой революции» в сельском хозяйстве.

1970 — открыты ферменты, позволяющие разрезать молекулу ДНК в нужных местах. Н. Борлауг получает Нобелевскую премию за создание короткостебельных сортов пшеницы, что стало первым случаем признания научных заслуг селекционера.

Чтобы понять, как далеко зашли эти селекционно-эволюционные изменения, достаточно взглянуть на кукурузные початки (их возраст — 5 тыс. лет), найденные при раскопках в пещере Теуакан (Мексика). Они примерно в 10 раз меньше, чем у современных сортов.

1973 — Стенли Коэн и Герберт Бойер переносят ген, специфический участок ДНК, из одного организма в другой, начало ДНК-технологии.

1976 — первая регламентация работ с рекомбинантной ДНК.

1980 — Нобелевская премия за синтез первой рекомбинантной молекулы.

1982 — первое коммерческое применение методов биотехнологии — зарегистрировано первое лекарство, полученное методами биотехнологии: человеческий инсулин, вырабатываемый бактериями. Первая генетическая трансформация растительной клетки (удалось получить новую окраску цветков петунии).

1983 — 1983 — получение первых растений с использованием методов биотехнологии. Первое генетически модифицированное (ГМ) растение (табак).

1986 — первая вакцина, полученная методами генной инженерии (от гепатита В); первое противораковое лекарство, полученное методами биотехнологии (интерферон).

1987 — первое разрешение на полевые испытания ГМ растений (США).

1990 — первый пищевой продукт, модифицированный методом биотехнологии — фермент, применяемый при изготовлении сыра, был разрешен для использования в США первый зарегистрированный продукт питания с ГМ ингредиентами: модифицированные дрожжи (Великобритания).

1992 — администрация по контролю над пищевыми продуктами и лекарственными препаратами постановляет, что продукты питания, полученные с использованием биотехнологических методик, должны регулироваться тем же самым способом, что и полученные с использованием традиционных методик.

1993 — создание Биотехнологической промышленной организации, международного сообщества специалистов, занимающихся проблемами биотехнологии.

1994 — первое разрешение на пищевой продукт, полученный с использованием биотехнологических методик: помидоры FLAVR SAVR.

1995 — введение в практику первого сорта сои, полученного при помощи биотехнологии.

1997— американское правительство одобряет 18 разновидностей зерновых, полученных с использованием биотехнологии.

1996-1997 — начало возделывания первых ГМ культур: кукуруза, соя, хлопчатник (Австралия, Аргентина, Канада, Китай, Мексика, США).

1999 — выведен «золотой» рис, обогащенный каротином, для профилактики слепоты у детей развивающихся стран.

2000 — первая расшифровка генома растения: Arabidopsis thaliana; обогащенный провитамином А «Золотой» рис стал доступным для развивающихся стран. Расшифровка генома человека. Создание Совета по вопросам информации в области биотехнологии.

2001 — первая полная карта генома сельскохозяйственной культуры (рис).

2003 — ГМ растения возделывают почти на 70 млн га в 18 странах мира, где проживает более половины человечества.

2004 — ГМ растения возделывают более чем на 80 млн га в 18 странах мира.

Болезни культурных растений как двигатель эволюции аграрной цивилизации

Историки описывают историю человечества либо как смену общественно-экономических формаций, либо как цепочку великих войн и, соответственно, великих завоевателей. Однако имеет право на жизнь и другая точка зрения — закономерности миграции людей, военных побед и поражений обусловлены состоянием сельского хозяйства в конкретных странах. То есть, на самом деле, двигателем истории человечества являются не великие завоеватели, а болезни домашних животных и культурных растений. Такая точка зрения вроде бы очевидна, однако остается неучтенным то обстоятельство, что эта движущая сила действует и в настоящее время, только вот мигрировать уже людям некуда. Так как возможности природы практически исчерпаны, для того, чтобы обеспечить выживание людей, необходимо развитие качественно новых приемов ведения сельского хозяйства. Пришел конец сельскохозяйственной экспансии, необходима его интенсификация. Важным обстоятельством остается независимая, неконтролируемая динамика распространения болезней, вредителей, техногенных загрязнителей. Например — распространение возбудителей болезней; насекомых, таких как саранча; грызунов; различных типов сорняков. Те самые «волны жизни», динамика которых и прогноз не поддаются до настоящего времени никакому контролю. Как справлялось человечество с такими волнами жизни в 20-м веке? Да просто — нагружало сельское хозяйство химическими инсектицидами, и т.д., которые теперь обнаружены даже в печени рыб в мировом океане и у пингвинов в Антарктиде. Установка на уничтожение живых организмов-вредителей привела к глобализации распространения химического загрязнения и к тому, что жизнь полезных организмов, включая человека, оказалась плохо совместима с таким способом ведения сельского хозяйства.

В последние годы активно развивается так называемое «натуральное биологическое земледелие», исключающее любые формы его химизации. Это очень интересное направление, которое заслуживает всяческой поддержки и внимания. Да ведь только это не спасет человечество от динамики тех самых волн жизни и необходимости разработки методов, так сказать, быстрого реагирования, на неизбежные изменения экологической обстановки в каждом конкретном регионе. Как это бывает — легко можно увидеть, вспомнив некоторые исторические детали.

В древнем Вавилоне главным продуктом питания была пшеница. Черная головня, болезнь пшеницы, отмечалась еще в XX веке до нашей эры. Царь Соломон (980 г. до н.э.) ввел специальную службу контроля болезней растений.

В 715 году до н.э. романцы, в целях спасения пшеницы от грибкового заболевания с красными спорами (ржавчина), сотворили себе богов — Robigo и Robigus, в честь которых, чтобы их задобрить и спасти пшеницу от ржавчины, приносили в жертву животных красной масти.

Известный со времен Рима, пшеничный грибок ржавчины продолжал быть бичом фермеров даже в XX веке. В 20-годах прошлого века, это заболевание почти полностью разрушило производство пшеницы в Америке и Канаде. В 1970 годах южная гниль листьев зерновых, ранее не очень агрессивное заболевание, внезапно стало доминирующим и полностью разрушило производство зерновых на многих фермах Америки.

После распада Римской Империи в Европе главной зерновой культурой, из которой готовили хлеб, стала рожь. Тогда уже в Европе распространилось грибковое заболевание ржи — спорынья. Зерна, зараженные этим грибком, попадали вместе со здоровыми в хлеб. У людей, которые ели такой хлеб, развивались сосудистые спазмы, которые приводили к гангренам. Эту болезнь называли лихорадкой святого Антония. и только замена ржи на картофель, пришедший из Америки, привел к уменьшению гибели людей от этой болезни, приносимой вместе со спорами спорыньи.

Картофель был интродуцирован в Европу около 1750 года и стал основным продуктом питания для бедных людей, например, в Ирландии, где арендаторы расплачивались за аренду земли пшеницей, а сами питались картофелем. Однако распространение некоторых сорняков, холодные летние месяцы в 40 годах XIX века привели к эпидемии фитофтороза.

Наверное, среди болезней растений нет другой столь трагически известной, как фитофтора картофеля — она оказала роковое влияние на судьбу целой нации. Недаром немецкий ботаник Антон де Бари, описавший возбудителя болезни, дал ему имя Phytophthora infestans — инфекционный пожиратель растений.

Картофельная болезнь появилась в США и в Европе почти одновременно, в начале 40-х годов XIX в. Впервые ее зарегистрировали в 1844 г., а уже последующие два года стали драматической вехой в судьбе народов. В Европу пришли голод и нищета. Особенно сильно пострадало население Ирландии. В 1845 г. там проживало около 8 млн человек, причем для 6 млн картофель составлял, по крайней мере, половину пищевого рациона, а остальные питались почти исключительно картофелем. Лишившись его, люди потеряли единственный источник существования. Смерть косила людей с такой скоростью, что их не успевали хоронить. За голодом последовали его неминуемые спутники — инфекционные болезни. Началась массовая миграция ирландцев. Толпы эмигрантов атаковали отплывающие суда, бросая землю, дома и близких людей. Тысячи ирландцев умерли от голода, полтора миллиона эмигрировали в Америку. Множество современных американских семей ирландского происхождения берет свое начало от этого исхода, вызванного болезнью картофеля.

Род Phytophthora «славен» не только «картофельным грибом» P.cinnamomi уничтожила половину эвкалиптовых лесов в Австралии; P.palmivora — опаснейший паразит пальм и гевеи. P.cactorum вызывает наиболее распространенные заболевания яблонь и тд.

Массовые поражения томатов фитофторозом были зафиксированы значительно позже, чем на картофеле. Томаты — близкий родственник картофеля, относятся они к тому же роду, но к разным подродам. Для сильного поражения томата была необходима адаптация паразита к обмену веществ, отличающемуся от такового у первичного хозяина — картофеля. Однако сейчас имеются внутривидовые формы фитофторы, поражающие томаты сильнее, чем картофель, и вызывающие гниение плодов.

Споры гриба с дождевыми потоками проникают в почву и заражают формирующиеся клубни. Наиболее активно этот процесс происходит при уборке картофеля, когда поврежденные клубни контактируют с зараженной ботвой. Поражение клубней опасно не столько само по себе (при нормальном хранении фитофтора не переходит на здоровые), сколько снижением общего неспецифического иммунитета в результате хронического отравления.

Опасность фитофторы связана с ее высокой изменчивостью. В ходе эпидемии образуется гигантское споровое облако. Введение в селекционные сорта новых генов устойчивости из диких видов дает лишь временный эффект — вскоре накапливаются вирулентные для них расы. Поскольку тип обмена оомицетов (к которым относится фитофтора) отличается от обмена других грибов, большинство системных фунгицидов для них нетоксичны. В 80-х годах XX века был открыт класс соединений, фениламидов, высокотоксичных для фитофтор вследствие ингибирования их РНК-полимеразы, и создан коммерческий препарат ридомил. Однако очень скоро эффективность ридомила упала из-за накопления резистентных к нему штаммов. Это заставило усилить поиск новых фунгицидов и разрабатывать антирезистентные стратегии их применения.

Одним из важнейших деревьев Америки был каштан. Каштановая гниль убила его в начале XX века. Грибок, вызывающий это заболевание, был занесен в Америку из Азии через Европу.

Типичным напитком для англичан, начиная с XVII века, на самом деле был не чай, а кофе. Однако эпидемия грибкового заболевания — кофейной ржавчины — на Цейлоне привела к возникновению знаменитой традиции английского чаепития.

В 1980 годах новая болезнь, названная антракнозом кизила, стремительно распространилась по всем горам Альпачино и на больших высотах в некоторых местах практически уничтожила весь кизил.

Растения могут уничтожаться также множеством неживых факторов, таких, как некоторые погодные условия, химическое загрязнение почв или воздуха. Например, использование зимой соли на дорогах для предупреждения гололедицы может полностью уничтожить все растения, растущие рядом.

Большинство болезней растений вызываются грибками, которые могут расти на мертвых, умирающих или живых растениях. Грибы имеют в своем строении нитеподобные структуры — гифы, которые воспроизводят споры. Офомное количество этих спор распространяется разными путями и заражают все новые и новые растения. Грибки продуцируют широкий спектр ферментов, способных разлагать, похоже, любые органические соединения до фрагментов, которые могут быть использованы этими грибками в пищу.

Заболевания растений вызывают и многие виды бактерий. Они не образуют спор, переносятся вместе с водой или насекомыми. Например, болезнь бананов Моко вызывается бактериями. Огненная гниль — болезнь яблок и груш. У пораженных деревьев листья скручиваются, как бы обожженные огнем. Отсюда происходит и название болезни. Ее распространенность препятствует разведению яблок и груш в некоторых регионах.

Фитоплазмы меньше, чем бактерии, и не имеют защитной клеточной стенки. Они являются облигатными паразитами и вызывают пожелтение или формирование так называемых ведьминых метелок — «witches brooms» у некоторых растений-хозяев. Смертельное пожелтение пальм вызвано такой фитоплазмой, что привело к их массовой гибели в южной Флориде.

Болезни растений вызываются и вирусами. Вирусы часто приводят к изменениям окраски растений и их формы, включая скручивание, перевивание и всяческие другие изменения. Вирусные заболевания приводят к резкому падению продуктивности растений.

Вирусы растений — очень простые организмы, состоят только из рибонуклеиновой кислоты (материал наследственности), окруженной белковой капсулой.

В конце XV века в Европе были очень популярны тюльпаны. Наиболее популярными были сорта с прожилками контрастных цветов. В некоторых случаях появление таких прожилок было обусловлено вирусной инфекцией, которая вызывает болезнь, известную в настоящее время под названием «разрушитель тюльпанов» (вирус мозаичности тюльпанов).

Небольшие червеобразные животные, называемые нематодами, могут инфицировать растения и вызывать болезни. Они повреждают корни растений и приводят к уменьшению их продуктивности и даже к смерти, например, клубники.

Некоторые цветковые растения паразитируют на других, в частности, на деревьях. Листьям омелы поклонялись древние европейцы, поскольку они сохранялись зелеными зимой. Сегодня омела может погубить все зеленые насаждения в городе Киеве.

Использование химических соединений для защиты растений от болезней началось несколько тысяч лет назад. В XX веке до нашей эры люди заметили, что вулканические выделения защищают зерновые от болезней, что привело к использованию серосодержащих препаратов в качестве средства защиты растений. До сих пор сера используется в защите растений от некоторых болезней.

Развитие приемов химической защиты растений от болезней активно началось в XVIII веке с созданием смеси Бордо и ее успешным использованием против некоторых заболеваний. И до сих пор это эталон для всех фитонцидов.

В те времена, когда широко были распространены деревянные корабли, для их защиты от грибковых заболеваний, использовали каменную соль.

Удаление либо уничтожение патогенов — это одна из форм защиты растений от болезней.

В 60 году XVIII века Джордж Вашингтон издал приказ об обязательном промывании пшеницы горячей водой для удаления спор с инфицированных зерен.

Безуспешно пытались также искоренить пузырчатую ржавчину белого горошка. Смородину и крыжовник (промежуточные хозяева ржавчины) выкапывали или уничтожали.

Запрет на ввоз растений из одной страны в другую — это еще один способ контролировать распространение болезней растений. На границах в развитых странах имеются специально обученные собаки, проверяющие багаж пассажиров на присутствие растений или их семян, которые могут нести патогены флоры.

Фермеры пытаются контролировать распространение болезней растений путем севооборота. Такие смены (ротация) культур снижают и риск инфекции растений, и появление эпидемиологических ситуаций (отсюда пошли трехпольная, семипольная и другие системы севооборота), одновременно оптимально расходуются питательные вещества.

Снижение заболеваемости растений достигается в настоящее время развитием их генетической устойчивости. Селекционеры искусственно скрещивают разные варианты растений, чтобы в потомстве получить гибриды, несущие гены устойчивости к различным заболеваниям.

Заболевания растений могут контролироваться и с помощью биотехнологических приемов. Например, используя молекулярно-генетические технологии, можно выделить из вируса ген одного из его белков, вставить его в растение-хозяина, вследствие чего такое растение приобретет устойчивость к данному вирусу.

Понятно, что наиболее эффективен комплексный подход, который объединяет в себе и старые традиции предупреждения болезней, и новые технологии для создания всех необходимых условий для успешного развития культурных растений и предупреждения их заболеваний.

Следует подчеркнуть, что на современном этапе селекции развивается новый комплекс методов интенсификации сельского хозяйства, целью которого является ускорение получения нужных для человека форм живых организмов с использованием методов генной инженерии, ДНК-технологий.

В этом направлении увеличение защищенности нужных человечеству живых организмов достигается, в основном, не путем изменений условий их воспроизводства, а повышением их устойчивости к неблагоприятным внешним воздействием, то есть качественно меняется объект воздействия.

Методы ДНК-технологий привлекают для того, чтобы изменить внутреннюю возможность организмов сохранять свои свойства, важные для человека, в таких условиях среды, какие уж сложились в настоящее время и в данном конкретном регионе, касается ли это химического загрязнения или засоленности почв, изменений климата либо агрессии новых возбудителей болезней или вредных насекомых. Понятно, что количество видов культурных растений, используемых для обеспечения потребностей растущего человечества, ограничено. Поддается исчислению и количество неблагоприятных внешних условий, в которых имеется необходимость сохранять их высокую продуктивность. Именно с этим связаны надежды на то, что методы ДНК-технологий, в конечном итоге, позволят накопить определенный список приемов спасения земледелия в условиях резких изменений окружающей среды. Это и будет в будущем таким «батальоном приемов быстрого реагирования», предназначенного для решения любых вновь возникающих проблем разведения домашних животных и культурных растений.

Традиционные экстенсивные пути увеличения продуктивности агроэкосистем

Основная нравственная проблема эволюции человека — голод

Одна из основных тенденций развития человеческого общества — непрерывное повышение уровня производства, в конечном счете — производительности труда. Это позволяло человеку в течение всей его истории постепенно увеличивать «емкость среды обитания». Однако если в этом проявляется вся мощь человеческого разума, то в заполнении увеличивающейся емкости среды Homo sapiens ведет себя как любой другой биологический вид. Эту емкость вид заполняет до уровня, на котором регуляторами снова оказываются биологические факторы. Так, по оценкам ООН на 1985 год, смерть от голода угрожала почти 500 млн. человек, или примерно 10% населения мира; в 1995 году периодически или постоянно от голода страдали около 25% людей. Голод является основным эволюционным фактором человечества.

Большой вклад в понимание опасности голода внесла работа международной неправительственной организации, так называемого «Римского клуба», созданного в 60-е годы XX века по инициативе Аурелио Печчеи. В Римском клубе был разработан ряд последовательно уточнявшихся моделей, исследование которых позволило рассмотреть некоторые сценарии возможного развития будущего Земли и судьбы человечества на ней. Результаты этих работ встревожили весь мир. Стало ясно, что путь развития цивилизации, ориентированный на постоянное увеличение производства и потребления, ведет в тупик, поскольку не согласуется с ограниченностью ресурсов на планете и возможностями биосферы перерабатывать и обезвреживать отходы промышленности. Эта угроза биосфере Земли вследствие нарушения устойчивости экосистем получила название экологического кризиса. С тех пор и в научной литературе, и в широкой печати, в средствах массовой информации постоянно обсуждаются различные проблемы, связанные с угрозой всепланетного, глобального экологического кризиса.

Хотя после выхода работ Римского клуба многие оптимисты выступали с «опровержениями» и «разоблачениями», не говоря уж о научной критике предсказаний первых глобальных моделей (и в самом деле не вполне совершенных, как и любая модель сложной системы), уже через 20 лет можно было констатировать, что реальный уровень численности населения Земли, отставания производства продовольствия от роста потребности в нем, уровень загрязнения природной среды, рост заболеваемости и многие другие показатели оказались близки к тому, что прогнозировалось этими моделями. А поскольку именно экология оказалась наукой, имеющей методологию и опыт анализа сложных природных систем, включая влияние антропогенных факторов, прогнозировавшийся глобальными моделями кризис стали называть «экологическим».

Хотя площадь суши вдвое меньше, чем площадь, занимаемая океанами, годовая первичная продукция углерода ее экосистемами более чем вдвое превышает таковую Мирового океана (52,8 млрд. тонн и 24,8 млрд. тонн соответственно). По относительной продуктивности наземные экосистемы в 7 раз превышают продуктивность экосистем океана. Из этого, в частности, следует, что надежды на то, что полное освоение биологических ресурсов океана позволит человечеству решить продовольственную проблему, не очень обоснованы. По-видимому, возможности в этой области невелики — уже сейчас уровень эксплуатации многих популяций рыб, китообразных, ластоногих близок к критическому, для многих промысловых беспозвоночных — моллюсков, ракообразных и других, в связи со значительным падением их численности в природных популяциях, стало экономически выгодным разведение их на специализированных морских фермах, развитие марикультуры. Примерно таково же и положение со съедобными водорослями, такими как ламинария (морская капуста) и фукус, а также водорослями, используемыми в промышленности для получения агар-агара и многих других ценнейших веществ (Розанов, 2001).

Развивающиеся страны и страны с переходной экономикой стремятся в первую очередь к продовольственной независимости. Они хотят производить пищу сами, а не зависеть от других стран, ибо продовольствие — это, пожалуй, самое грозное до сих пор политическое оружие и оружие давления в современном мире (пример — Россия, которая ввозит до 40 процентов продовольствия). Чтобы удвоить производство продовольствия и снять зависимость, необходимы новые технологии, знания о генах, определяющих урожайность и другие важные потребительские свойства основных  сельскохозяйственных   культур.   Предстоит  также серьезно потрудиться над адаптацией этих культур к конкретным экологическим условиям этих стран. Иными словами, приходится надеяться на трансгенные, или генно-модифицированные организмы (ГМО), выращивание которых значительно дешевле, меньше загрязняет окружающую среду и не требует привлечения новых территорий.

Мир как был несовершенен, так и остался. Первая Всемирная продовольственная конференция состоялась более 30 лет назад, в 1974 г. На ней было подсчитано, что в мире существовало 840 млн жертв хронического недоедания. Вопреки сопротивлению многих, она впервые провозгласила «неотъемлемое право человека на свободу от голода».

Итоги реализации этого права были подведены на Всемирном продовольственном форуме в Риме 22 года спустя. Он зафиксировал крах надежд мирового сообщества на обуздание голода, так как положение на фронте борьбы с этим социальным злом осталось без перемен. В связи с этим римская встреча наметила более скромные цели — снизить количество голодающих к 2015 г хотя бы до 400 млн человек.

С тех пор эта проблема еще больше обострилась. Как отмечалось в докладе генсека ООН Кофи А.Анана «Предотвращение войн и бедствий», сегодня прожиточный уровень свыше 1,5 млрд чел. — менее доллара в день, 830 млн страдают от голода. За период 1960-2000 гг. производство всех видов сельскохозяйственной продукции увеличилось с 3,8 млрд. до 7,4 млрд. т. Однако количество продовольствия, произведенного в среднем на 1 человека, осталось неизменным (1,23 т/чел). В настоящее время в мире недоедает почти половина населения, а четвертая часть голодает. В странах Западной Европы, Северной Америки и в Японии, где наибольшее распространение получила преимущественно химико-техногенная интенсификация сельского хозяйства и проживает менее 20% населения земного шара, в пересчете на каждого человека расходуется в 50 раз больше ресурсов по сравнению с развивающимися странами и выбрасывается в окружающую среду около 80% всех вредных промышленных отходов (доклад комиссии ВОЗ), что ставит на грань экологической катастрофы все человечество.

Сельское хозяйство — уникальный вид человеческой деятельности, который можно одновременно рассматривать как искусство и науку. И всегда главной целью этой деятельности оставался рост производства продукции, которое ныне достигло 5 млрд т в год. Чтобы накормить растущее население Земли, к 2025 г. этот показатель предстоит увеличить по меньшей мере на 50%. Но такого результата производители сельскохозяйственной продукции смогут достичь только в том случае, если в любой точке мира получат доступ к самым передовым методам выращивания самых высокоурожайных сортов культурных растений. Для этого им необходимо также овладеть всеми последними достижениями сельскохозяйственной биотехнологии, в частности, получения и выращивания генетически модифицированных организмов.

От каннибализма до ГМО

Для того чтобы прокормить человечество, требуется интенсификация сельского хозяйства. Однако такая интенсификация сказывается на окружающей среде и вызывает определенные социальные проблемы. Впрочем, судить о вреде или пользе современных технологий (в том числе и растениеводства) можно лишь с учетом стремительного роста населения Земли. Известно, что население Азии за 40 лет увеличилось более чем вдвое (с 1,6 до 3,5 млрд человек). Каково было бы дополнительным 2 млрд человек, если бы общество интенсивно не использовало достижения «зеленой революции»? Хотя механизация сельского хозяйства привела к уменьшению числа фермерских хозяйств и в этом смысле способствовала росту безработицы, польза от «зеленой революции», связанная с многократным ростом производства продуктов питания и устойчивым снижением цен на хлеб почти во всех странах мира, гораздо более значима для человечества.

В настоящее время наблюдается замедление роста урожайности, сокращения пашни с 0,24 га в 1950 г. до 0,12 га на человека, отчетливо начинает ощущаться дефицит и загрязнение водных ресурсов, изменения климата. В этих условиях поиск новых приемов интенсификации сельского хозяйства, в частности, широкое внедрение в практику генетически модифицированных организмов — пока единственная альтернатива традиционному ведению сельского хозяйства.

Генетически модифицированные организмы (ГМО) — это организмы, генетический аппарат которых изменен для улучшения их свойств. Иначе, генетическая инженерия — это создание новых форм организмов за счет «пересадки» генов из одной биологической системы в другую. В растениеводстве получают трансгенные растения, а в животноводстве — так называемых «гентавров». В животноводстве пока что успехи более чем скромные. Что касается растениеводства, то здесь успехи, можно сказать, огромные. Уже культивируются сотни сортов трансгенных растений, имеющих не свойственные им особенности за счет функционирования в них чужеродных генов. Это различные сорта картофеля, устойчивого к колорадскому жуку, кукурузы — устойчивой к отдельным гербицидам, клубники — более продуктивной, и многое другое.

Противники ГМО называют их «пищей Франкенштейна», «новым Чернобылем замедленного действия», забывая, что «пищу Франкенштейна» они едят каждый день, в виде хлеба, который есть продукт природной генной инженерии. А сторонники скромно напоминают, что уже через четверть века без ГМО просто невозможно будет обеспечить непрерывно растущее человечество пищей и лекарствами. Тем более, что лекарства, витамины, антибиотики — они все в большей степени, за последние более чем 60 лет, являются продуктами биотехнологий, результатами генно-инженерных разработок. Значит, их тоже нужно запрещать? Чем лекарства в этом отношении отличаются от растений, непонятно. И те, и другие служат для продления человеческой жизни, и, главное, не только количества прожитых лет, но и их качества. При этом очевидно, что генетически измененная сельскохозяйственная продукция, прежде чем попасть на поля, проходит массу жесточайших, тщательнейших испытаний.

Можно ожидать, что ГМО будут играть особую роль в новой «зеленой революции». Поток информации о ГМО позволяет предполагать, что ГМО способны помочь решению множества проблем, от обеспечения продуктами питания растущего населения Земли до сохранения биологического разнообразия на планете и уменьшения давления пестицидов на окружающую среду. Один из аргументов за использование ГМО сводится к тому, что именно «традиционное» сельскохозяйственное производство служит теперь основным источником загрязнения окружающей среды.

Решение этой проблемы может быть получено путем активного использования достижений биотехнологии, особенно в культивировании генетически модифицированных сортов зерновых, не требующих значительного применения пестицидов. Фермеры, выращивающие ГМО, используют меньше пестицидов, чем «традиционные» земледельцы. Как известно, за год на планете прибавляется около 85 млн человек, а прироста производства продовольствия хватает только на половину.

Переход к трансгенным растениям (ГМО) — это смена модели «один вредитель — один химпрепарат» парадигмой «один вредитель — один ген».

Вредители быстро адаптируются к новым условиям и приобретают устойчивость к новым поколениям инсектицидов. Например, колорадский жук приобретает достаточную устойчивость за 2 поколения.

Хороший пример влияния современных технологий на жизнь человека — создание «золотого» риса. На выведение «золотого» риса было потрачено 10 лет и 100 млн долларов. Теперь ученые из Международного исследовательского института риса расположенного в Филадельфии довольны, и с учетом того, что все это время 900 млн людей, живущих за чертой бедности (в основном в Азии, где основным продуктом питания как раз и является рис) будут продолжать страдать от голода и многочисленных болезней, сотрудники института готовы бесплатно передать новый рис любому государству, которое пожелает заняться его разведением. Кроме того, с одним модификатором, так называемым «железным» рисом, который, благодаря повышенному содержанию железа, способен помочь двум миллиардам людей, страдающих от анемии.

Производство продуктов питания на душу населения в 1998 г. превысило показатели 1961 г. на четверть и оказалось на 40% дешевле. Однако проблемы производства продовольствия и борьбы с голодом нельзя считать решенными.

Проблема голода и генные технологии — есть ли альтернатива для человечества?

«Зеленая революция»

Предшественницей биотехнологической революции, основанной на генно-хромосомных манипуляциях у растений, была зеленая революция. Она завершилась 30 лет назад и впервые дала впечатляющие результаты: почти вдвое повысилась продуктивность злаковых и бобовых растений.

Выражение «зеленая революция» употребил впервые в 1968 г. директор Агентства США по международному развитию В. Гауд, пытаясь охарактеризовать прорыв, достигнутый в производстве продовольствия на планете за счет широкого распространения новых высокопродуктивных и низкорослых сортов пшеницы и риса в странах Азии, страдавших от нехватки продовольствия. Многие журналисты тогда стремились описать «зеленую революцию» как массовый перенос передовых технологий, разработанных в наиболее развитых и получавших стабильно высокие урожаи агросистемах, на поля крестьян в странах «третьего мира». Она ознаменовала собой начало новой эры развития сельского хозяйства на планете, эры, в которую сельскохозяйственная наука смогла предложить ряд усовершенствованных технологий в соответствии со специфическими условиями, характерными для фермерских хозяйств в развивающихся странах. Это потребовало внесения больших доз минеральных удобрений и мелиорантов, использования полного набора пестицидов и средств механизации, в результате произошел экспоненциальный рост затрат исчерпаемых ресурсов на каждую дополнительную единицу урожая, в том числе пищевую калорию.

Это было достигнуто благодаря переносу в создаваемые сорта целевых генов, чтобы увеличить прочность стебля путем его укорочения, добиться нейтральности к световому периоду для расширения ареала возделывания и эффективной утилизации минеральных веществ, особенно азотных удобрений. Перенос избранных генов, хотя и в пределах видов, с использованием традиционных методов гибридизации, можно рассматривать как прообраз трансгеноза.

Идеолог «зеленой революции» Норман Борлауг, получивший за ее результаты в 1970 г. Нобелевскую премию, предупреждал, что повышение урожайности традиционными методами может обеспечить продовольствием 6-7 млрд. человек. Сохранение демографического роста требует новых технологий в создании высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. В обращении к форуму по генной инженерии, проходившем в марте 2000 г. в Бангкоке (Таиланд), Борлауг заявил, что «либо уже разработаны, либо мы находимся на завершающихстадиях разработки технологий, которые позволят прокормить население численностью более 10 млрд. человек».

Работа, начатая Н. Борлаугом и его коллегами в Мексике в 1944 г.,продемонстрировала исклю чительно высокую эффективность целенаправленной селекции по созданию высокоурожайных сортов сельскохозяйственных растений. Уже к концу 60-х годов широкое распространение новых сортов пшеницы и риса позволило многим странам мира (Мексике, Индии, Пакистану, Турции, Бангладеш, Филиппинам и др.) в 2-3 и более раз увеличить урожайность этих важнейших культур. Однако вскоре обнаружились и негативные стороны «зеленой революции», вызванные тем, что она была в основном технологической, а не биологической. Замена генетически разнообразных местных сортов новыми высокоурожайными сортами и гибридами с высокой степенью ядерной и цитоплазматической однородности значительно усилила биологическую уязвимость агроценозов, что было неизбежным результатом обеднения видового состава и генетического разнообразия агроэкосистем. Массовому распространению вредных видов, как правило, способствовали и высокие дозы азотных удобрений, орошение, загущение посевов, переход к монокультуре, минимальным и нулевым системам обработки почвы и тд.

Сопоставление «зеленой революции» с происходящей ныне биотехнологической проведено для того, чтобы показать ту социально значимую компоненту, которая лежит в основе всех генно-хромосомных манипуляций. Речь идет о том, как обеспечить население Земли продовольствием, создать более эффективную медицину, оптимизировать экологические условия.

Современные сорта позволяют повысить среднюю урожайность за счет более эффективных способов выращивания растений и ухода за ними, за счет их большей устойчивости к насекомым-вредителям и основным болезням. Однако они лишь тогда позволяют получить заметно больший урожай, когда им обеспечен надлежащий уход, выполнение агротехнических приемов в соответствии с календарем и стадией развития растений (внесение удобрений, полив, контроль влажности почвы и борьба с насекомыми-вредителями). Все эти процедуры остаются абсолютно необходимыми и для полученных в последние годы трансгенных сортов.

Более того, радикальные изменения в уходе за растениями, повышение культуры растениеводства становятся просто необходимыми, если фермеры приступают к возделыванию современных высокоурожайных сортов. Скажем, внесение удобрений и регулярный полив, столь необходимые для получения высоких урожаев, одновременно создают благоприятные условия для развития сорняков, насекомых-вредителей и ряда распространенных заболеваний растений. При внедрении новых сортов необходимы дополнительные меры по борьбе с сорняками, вредителями и болезнями, усиливается зависимость продуктивности агроэкосистем от техногенных факторов, ускоряются процессы и возрастают масштабы загрязнения и разрушения окружающей среды.

Несмотря на значительные успехи «зеленой революции», битва за продовольственную безопасность для сотен миллионов людей в наиболее бедных странах далека от завершения.

Исчерпанность возможностей зеленой революции

Стремительный рост населения «третьего мира» в целом, еще более разительные перемены демографических распределений в отдельных регионах, неэффективные программы борьбы с голодом и бедностью во многих странах «съели» большую часть достижений на ниве производства продовольствия. Скажем, в странах Юго-Восточной Азии производство продуктов питания все еще явно недостаточно, чтобы победить голод и бедность, в то время как Китай совершил колоссальный скачок. Успехи Китая в борьбе с голодом и бедностью (в частности, по сравнению с Индией) относят к тому, что руководство Китая выделяет огромные средства на образование, здравоохранение и на науку. При более здоровом и лучше образованном сельском населении китайская экономика на протяжении последних 20 лет оказалась в состоянии развиваться вдвое быстрее индийской. Сегодня средний доход на душу населения в Китае почти вдвое выше, чем в Индии.

В общем, мировому сообществу и без генетически модифицированных организмов удалось добиться сдвигов в борьбе с голодом. С 1950 по 1990 годы производство зерновых, а также говядины и баранины выросло почти в три раза (соответственно с 631 до 1780 млн т и с 24 до 62 млн т), производство рыбопродуктов — почти в 4,5 раза (с 19 до 85 млн т). Несмотря на более чем двукратный рост обитателей Земли за тот же период, это позволило повысить с 1961 по 1994 год мировое производство продовольствия на душу населения на 20% и несколько поднять уровень питания в развивающихся странах.

Тем не менее, «зеленая революция» не внесла особых изменений в количественные и качественные параметры питания в бедных странах. Душевое потребление зерновых в прямом и косвенном виде колеблется в современном мире от 200 до 900 кг в год. В отличие от населения развитых стран, которое потребляет урожай зерновых главным образом в виде мяса, молока и яиц, народы третьего мира довольствуются скудной диетой. В 1995 г. среднестатистический американец съедал 45 кг говядины, 31 кг свинины, 46 кг домашней птицы и 288 л молока, а в годовой рацион среднего жителя Индии входил лишь 1 кг говядины (следует учесть, что индуисты ее не едят), 0,4 кг свинины, 1 кг домашней птицы и 34 л молока.

В настоящее время численность популяции Homo sapiens в 6 млрд человек является наибольшей во всех высокопродуктивных биотопах Земли.

Человек использует около 7% из 180 млрд т продуктов фотосинтеза — органического вещества биосферы. Если для удвоениячисленности с 1 до 2 млрд человек потребовалось 80 лет (за период с 1850 по 1930 год), то в настоящее время — 40 лет. На 20% населения «процветающих» стран приходится 77% загрязнителей, выбрасываемых в биосферу.

Случилось так, что рациональные решения выносились экспертами, убежденными, что они работают во имя разума и прогресса, и не принимавшими в расчет протесты местного населения, считая их необоснованными суевериями. Такой подход часто приводит к пагубным результатам, которые уравновешивают и даже превосходят по своим последствиям их благотворные результаты. Так, «зеленая революция», осуществленная в целях стимулирования развития стран третьего мира, в значительной степени приумножила их продовольственные ресурсы и во многом позволила избежать неурожаев. Тем не менее, теперь понятно, что стартовая идея, которая состояла в том, чтобы отбирать и размножать на очень обширных площадях единственный селекционный сорт (количественно самый продуктивный) оказалась опасной по своим последствиям. Отсутствие генетического разнообразия давало возможность патогенному фактору, сопротивление которому не мог оказать этот сорт, уничтожать весь сезонный урожай. Стала очевидной необходимость восстановления определенного генетического разнообразия для того, чтобы оптимизировать, а не пытаться все более и более максимизировать урожайность.

Интенсивная технология приводит к деградации почв; ирригация, которая не учитывает особенности почвы, вызывает их эрозию; накопление пестицидов разрушает баланс и системы регуляций между видами — уничтожая полезные виды наряду с вредными, иногда стимулируя безудержное размножение вредного вида, который получил устойчивость к пестицидам; токсичные вещества, содержащиеся в пестицидах, переходят в продукты питания и ухудшают здоровье потребителей и т.д.

Дефицит плодородных почв

В последние годы обострилась проблема дефицита плодородных почв. Если сравнить мировую продукцию растениеводства в 1950 и 1998 г., то при урожайности 1950 г. для обеспечения такого роста пришлось бы засеять не 600 млн га, как ныне, а втрое больше. Между тем дополнительные 1,2 млрд га уже, по сути, взять негде, особенно в странах Азии, где плотность населения чрезвычайно высока. Кроме того, земли, вовлеченные в сельскохозяйственный оборот, с каждым годом становятся все более истощенными и экологически уязвимыми.

Из стран-экспортеров лишь США и Россия могут расширить посевы зерновых. Ни Австралия, ни Аргентина, ни Канада, ни страны ЕС резервов не имеют — там все распахано. В США, как и в России, также есть угодья, выведенные из оборота, так что, задействовав их, американцы могут получить еще 100 млн т в год. Это внушительный резерв экспорта, ибо свои потребности США с лихвой удовлетворяют на нынешних площадях. Но что США поставляют на мировой рынок? В основном кукурузу и сою — пшеницу они почти не экспортируют. Россия же, при использовании современных технологий, потенциально может экспортировать больше 100 млн т.

Влияние эрозии почв, сведения лесов и лугов на биоразнообразие все ощутимее; усиливается зависимость продуктивности агроэкосистем от техногенных факторов. С неудачами стран «третьего мирав и международных организаций, содействующих их развитию, в попытках добиться адекватной отдачи от вложений в сельское хозяйство смириться нелегко, поскольку на протяжении всей истории ни одной нации не удавалось повысить благосостояние и добиться развития экономики без предварительного резкого увеличения производства продуктов питания, главным источником которых всегда оставалось сельское хозяйство. Поэтому, как считают многие специалисты, в XXI в. предстоит вторая «зеленая революция». Без этого не удастся обеспечить человеческое существование всем, кто приходит в этот мир.

Очевидно, что потребуются немалые усилия, как традиционной селекции, так и современной сельскохозяйственной ДНК-технологии, для того чтобы добиться генетического совершенствования продовольственных растений в темпе, который позволил бы к 2025 г. удовлетворить потребности 8,3 млрд человек. Для дальнейшего роста производства сельскохозяйственной продукции понадобится много удобрений, особенно в странах Экваториальной Африки, где до сих пор удобрения вносят не более 10 кг на гектар (в десятки раз меньше, чем в развитых странах и даже в развивающихся странах Азии).

По оценкам специалистов, изучающих азотные циклы в природе, не менее 40% из 6 млрд человек, населяющих ныне планету, живы лишь благодаря открытию синтеза аммиака. Внести такое количество азота в почву с помощью органических удобрений было бы совершенно немыслимо, даже если бы все мы только этим и занимались.

«Зеленая революция» создала предпосылки для решения продовольственной проблемы, но не превратила обещание победить голод к XXI веку в действительность. Засуха в США и Канаде в 1989 г. сожгла почти треть урожая и напомнила миру о неустойчивости земледелия в условиях глобального потепления. В 90-е годы XX века темпы производства зерна замедлились, а в ряде регионов — снизились по сравнению с 80-ми.

Если принять индекс мирового производства продовольствия в 1979-1981 гг. за 100, то динамика его движения в 1993-1995 гг. приобрела отрицательное значение и составила в Африке — 95,9, в Северной и Центральной Америке — 95,4, в Европе — 99,4. Это поставило под угрозу достижения «зеленой революции» и потребовало создание принципиально новых методов для выведения новых сортов.

Положение в сельском хозяйстве осложнилось в связи со снижением плодородия и сокращением пахотных земель. По данным исследования, проведенного в 1991 г., потери верхнего слоя земли вследствие ее деградации в различных регионах мира в 16-300 раз превышали способность почвы к естественному восстановлению. По оценкам другого исследования, деградация земли с 1945 по 1990 год привела к снижению производства продовольствия в мире на 17%. Попытки компенсировать эти потери за счет ирригации и химизации дали определенный эффект, но разрушающе воздействовали на окружающую среду.

В сельском хозяйстве происходит ежегодный вынос с урожаем значительных количеств биогенных элементов, почва постепенно обедняется   ими,    истощается.   Внесение   минеральных удобрений компенсирует эти потери и позволяет получать относительно устойчивые высокие урожаи. Вместе с тем, не будучи связаны в гумусе, минеральные соли легко вымываются почвенными водами, постепенно стекают в водоемы и реки, уходят в подземные водоносные горизонты. В самой почве избыток минеральных солей изменяет состав почвенных животных и микроорганизмов, создающих гумус, его становится все меньше, и почва, теряя естественное плодородие, становится чем-то вроде мертвого пористого материала для пропитки минеральными солями. А промышленные удобрения всегда содержат примеси тяжелых металлов, которые склонны накапливаться в почве.

Процесс разрушения почвы значительно ускоряется применением ядохимикатов, убивающих вместе с вредителями почвенных насекомых, червей, клещей, без которых образование гумуса сильно тормозится.

Постепенно продукция с таких полей становится все более загрязненной нитратами и нитритами от избытка удобрений, пестицидами и тяжелыми металлами. Такая интенсификация земледелия дает, конечно, кратковременные положительные результаты, но все более обостряет проблему потери почвенного плодородия и сокращения земельных ресурсов.

Дальнейшее расширение посевных площадей приведет к катастрофическому ускорению исчезновения видов. Биологические методы поддержания плодородия почв — органические удобрения, смена и оптимальное сочетание культур, переход от химической защиты растений к биологической, строго соответствующие местным особенностям почв и климата способы обработки почв (например, безотвальная пахота) — необходимые условия сохранения и повышения плодородия почв и стабилизации производства продовольствия достаточно высокого качества и безопасного для здоровья людей.

Поиски выхода с использованием генетически модифицированных организмов

Широко известны медицинские проблемы, связанные с действием возбудителей болезней растений, в частности, грибов, на организм человека. Так, продукты жизнедеятельности грибка аспергилла — афлатоксины — являются опасными канцерогенами. Сегодня этим неистребимым грибком заражены посевы зерновых по всему миру — 20-25% площадей в зависимости от культуры и региона. И эти афлатоксины мы, не ведая об этом, потребляем, например, с хлебом. ПМО-сорта с устойчивостью к грибковым заболеваниям не несут никаких токсических нагрузок.

Учитывая возрастающий интерес фермеров и других производителей к биотехнологической продукции, увеличение посевных площадей под ГМО-культурами, в рамках государственных инициатив предусмотрено углубление научных исследований по оценке риска биотехнологической продукции. Ученые, как правило, высказываются за принцип «осторожного отношения». Восприятие риска, оценка риска несомненно зависят от уровня культуры нации. Например, даже «зеленые», активно протестуя против использования ГМ растений в сельском хозяйстве, как правило, даже не упоминают об использовании ГМО в медицине и фармакологии. Те же «Друзья Земли» признают безопасность устойчивых к гербицидам растений.

Никому не приходит в голову протестовать против генно-инженерного (человеческого) инсулина, которому диабетики в своей массе отдают предпочтение перед отечественным «свиным».

Во многих странах мира уже широко применяются в растениеводстве так называемые трансгенные (точнее другой термин — генетически модифицированные) растения — соя, кукуруза, хлопок, рапс, картофель и многие другие, устойчивые к определенным пестицидам или насекомым. В 1995 году в США зарегистрирован модифицированный сорт картофеля «NewLeaf», устойчивый к колорадскому жуку (компания «Монсанто»). Уже в последующие два года модифицированный сорт картофеля зарегистрировали у себя Канада, Япония, Мексика. Многие страны Европы, Южной Америки, Австралия проводят сегодня испытания модифицированных сортов растений.

Позитивные стороны модификации растений очевидны. Это — упрощение технологий выращивания сельскохозяйственных культур, существенное снижение энергозатрат. А, главное — уменьшение загрязнения окружающей среды пестицидами. Кроме того, ГМ растения дают значительное повышение урожайности за счет снижения вредных воздействий насекомых и микроорганизмов, снижение себестоимости, а отсюда и цен на продукты питания.

Надежды, которые возлагаются на генетически модифицированные (ГМ) растения, можно подразделить на два основных направления:

1. Усовершенствование качественных характеристик продукции растениеводства.

2. Увеличение продуктивности и стабильности растениеводства путем повышения резистентности растений к неблагоприятным факторам.

Создание генетически модифицированных растений чаще всего выполняется для решения следующих конкретных задач.

1) В целях увеличения урожайности путем повышения:

а) резистентности к патогенам;

б) резистентности к гербицидам;

в) устойчивости к температурам, различному качеству почв;

г) улучшения характеристик продуктивности (вкусовых качеств, облегчение усвояемости).

2) В фармакологических целях:

а) получение продуцентов терапевтических агентов;

б) продуцентов антигенов, обеспечения пищевой «пассивной» иммунизации.

Основные задачи ДНК-технологии в создании ГМ растений в современны' условиях развития сельского хозяйства и общества довольно многообразны и заключаются в следующем:

1. Получение гибридов (совместимость, мужская стерильность).

2. Рост и развитие растений (изменение габитуса растений — например, высоты, формы листьев и корневой системы и др.; изменение в цветении — например, строении и окраске цветков, времени зацветания).

3. Питание растений (фиксация атмосферного азота небобовыми растениями; улучшение поглощения элементов минерального питания; повышение эффективности фотосинтеза).

4. Качество продукции (изменение состава и/или количества сахаров и крахмала; изменение состава и/или количества жиров; изменение вкуса и запаха пищевых продуктов; получение новых видов лекарственного сырья; изменение свойств волокна для текстильного сырья; изменение качества и сроков созревания или хранения плодов).

5. Устойчивость к абиотическим факторам стресса (устойчивость к засухе и засолению, жароустойчивость; устойчивость к затоплению; адаптация к холоду; устойчивость к гербицидам; устойчивость к кислотности почв и алюминию; устойчивость к тяжелым металлам).

6. Устойчивость к биотическим факторам стресса (устойчивость к вредителям; устойчивость к бактериальным, вирусным и грибным болезням).

На практике среди признаков, контролируемых перенесенными генами, на первом месте стоит устойчивость к гербицидам. Доля устойчивых к вирусным, бактериальным или грибным болезням среди промышленно выращиваемых трансгенных растений — менее 1%.

Среди генов, определяющих устойчивость к гербицидам, уже клонированы гены   устойчивости   к   таким   гербицидам   как   глифосат (Раундап), фосфимотрицин (Биалафос), глифосимат аммония (Баста), сульфонилмочевинным и имидозолиновым препаратам. С использованием этих генов уже получены трансгенные соя, кукуруза, хлопчатник и тд. В России также проходят испытания трансгенные культуры, устойчивые к гербицидам. В Центре «Биоинженерия» создан сорт картофеля, устойчивый к Басте, проходящий в настоящее время полевые испытания.

Необходимость создания ГМО в современном мире связана с тем, что многие сорта характеризуются недостаточной приспособленностью к местным особенностям почвенно-климатических и погодных условий, технологиям возделывания (сортовой агротехнике) и требованиям рынка, нарушение принципов агроэкологического макро-, мезо- и микрорайонирования сельскохозяйственной территории. Односторонняя ориентация на «техногенную» интенсивность сортов и гибридов, способных обеспечить рост урожайности лишь при всевозрастающих затратах исчерпаемых ресурсов (минеральных удобрений, мелиорантов, пестицидов, орошений и пр.), неизбежно приводит к снижению коэффициентов ресурсной и энергетической эффективности, непропорциональному росту затрат невосполнимых ресурсов, загрязнению и разрушению природной среды.

Существенным направлением в получении ГМ растений являются попытки создать биотопливо. Проблема создания биотоплива возникла достаточно давно. Об этом мечтал еще Генри Форд. Будущий бензин можно будет извлекать из генетически модифицированных сои или кукурузы. Т.е. будут растения-фабрики по производству заданных веществ (например, упомянутого растительного масла, которое в недалеком будущем с успехом заменит нефть в качестве топлива). В результате резко сократятся посевные площади и воздействие добываемого топлива на окружающую среду. Переход к топливным плантациям должен начаться с биодизельных топлив — их молекулярная структура настолько близка к структуре некоторых растительных масел, что на первых порах можно будет обойтись и без генной инженерии.

Необходимо подчеркнуть, что с помощью генетической инженерии новые сорта не создают, а только улучшают их, делают более адаптированными к конкретным условиям разведения и задачам. То есть исходный сорт должен быть уже адаптирован к определенным условиям внешней среды, а также технологиям возделывания. Поэтому в комплексных селекционно-агротехнических программах должны быть изначально определены цели и этапы использования классических и биоинженерных методов управления наследственной изменчивостью при реализации той или иной морфофизиологической модели сорта (гибрида). Обычно районированные сорта, используемые для генно-инженерной работы, характеризуются идеальной агроэкологической «подогнанностью» его генома и цитоплазмы (плазмона) к конкретным условиям.

В принципе трансгенные растения должны заметно увеличить разнообразие сельскохозяйственных культур. Например, до сих пор селекция кукурузы в США основана на небольшом числе культивируемых сортов, и в результате применяемый генофонд довольно беден. Семена сортов, находящихся в семенных банках, практически не используются; для скрещивания применяют несколько высокоурожайных сортов. А если у нас есть гены, ответственные за необходимые свойства, то, вводя их в эти сорта, мы увеличим биоразнообразие используемых сортов.

Гпавная проблема природной генетической инженерии — ее медлительность

Генетической инженерией занимается и сама природа. За последние тысячелетия (с помощью искусственного отбора) она добилась немалого. Так, в частности, полагают, что вследствие генных мутаций и природной генной инженерии природа поставила на стол человеку массу новых продуктов, начиная от мягкой пшеницы (слияние трех геномов) и кончая кукурузой. Но как нормальному селекционеру спрессовать миллионы лет того, что делала природа, в десятилетия и даже годы? Как максимально сократить сроки? Способна ли справиться со всем этим генетика и селекция? Адаптивная система селекции растений, базирующаяся на мобилизации генофонда, управлении наследственностью, сортоиспытании и семеноводстве, обеспечивает повышение величины и качества урожая сельскохозяйственных культур на большей части земледельческой территории Земли. При этом именно селекционеры растений играют роль стратегов в улучшении сельскохозяйственных культур и обеспечении продовольственной безопасности, осваивая новые, в том числе и трансгенные, технологии. Поэтому ближайшая проблема в области селекции состоит в том, чтобы интегрировать и скооперировать усилия селекционеров и молекулярных биологов для решения общей задачи — повышения величины и качества урожая, ресурсо- и энергоэкономичности, экологической надежности, безопасности и рентабельности растениеводства.

Гибридизация, хотя до сих пор не вполне понятны ее молекулярные механизмы, играет важную роль в повышении эффективности сельского хозяйства. Так, при перекрестном опылении кукурузы образуются более сильные и урожайные гибриды. В компании «Plant Genetic System» в Генте такие гибриды получены не только для кукурузы, но и для рапса. Китай еще раз показал свои возможности, лежащие, по-видимому, в основе его тысячелетней устойчивости: независимо от политической системы в стране, он полностью обеспечил свою продовольственную безопасность.

Например, именно в Китае достигнуты большие успехи в селекции риса. Это прежде всего высокоурожайные гибриды на основе традиционных местных сортов, дающие 10-11 т/га вместо обычных 2,5-3. Фермеры довольны этими сортами, и сейчас их выращивают на огромных площадях в Китае, Вьетнаме и других странах Юго-Восточной Азии. Если бы все эти площади засевали одним сортом, то в скором времени он оказался бы очень восприимчивым к различным заболеваниям. Гибрид, полученный из различных ГМ сортов, стал важной вехой на пути к стабильно высоким урожаям риса, обеспечивающего продовольственную безопасность и благополучие половины населения Земли. В каждом районе, где выращивают свой сорт, не мешало бы использовать ГМ сорта и гибриды на их основе для получения широкого спектра высокоурожайных местных адаптированных сортов.

Анализ роста урожайности в XX веке показывает, что наряду с минеральными удобрениями, пестицидами и средствами механизации основную роль в этом процессе сыграло генетическое улучшение растений.

Так, вклад селекции в повышение урожайности важнейших сельскохозяйственных культур за последние 30 лет оценивают в 40-80%. Именно благодаря селекции на протяжении последних 50 лет, например в США, была обеспечена ежегодная прибавка урожая в размере 1-2% по основным полевым культурам. Имеются все основания считать, что в обозримом будущем роль биологической составляющей, и в первую очередь селекционного улучшения сортов и гибридов, в повышении величины и качества урожая будет непрерывно возрастать.

Однако для того, чтобы накормить мир, даже такие цифры сегодня малы. Селекционное конструирование нового сорта — трудный научный процесс. Это дело требует от селекционеров чудовищного упорства, десятков лет труда, а успех к ним чаще всего приходит только на склоне лет. Сколько селекционеров так и не дожили до времени, когда их усилия стали приносить плоды, а многие вообще остались без сортов. А проблема голода по-прежнему является главной для многих стран. Время не ждет, речь идет о миллионах живых людей, им требуется помочь.

Сложность путей создания сортов становится наглядной, если, например, учесть перечень требований к новому сорту пшеницы по классическому подсчету Николая Ивановича Вавилова. В число признаков, которым должен соответствовать новый сорт, входит сорок шесть пунктов.

Перечислим некоторые из них: форма зерна; высокий вес 1000 семян; крупный, при созревании не осыпающийся колос; не прорастающее на корню и в снопах зерно; прочная, неполегающая соломина; оптимальное соотношение массы зерна и соломины; иммунитет к вредителям, болезням; устойчивость к засухам; пригодность к механизированной уборке и т.д. и т.п.

И это по меркам прошедших десятилетий. Ныне же количество требований выросло еще больше. Чем больше признаков селекционер стремится объединить в одном сорте или гибриде, тем ниже темпы искусственного отбора, тем больше времени требуется для создания нового сорта.

Наличие отрицательных генетических и биоэнергетических по своей природе корреляций между признаками существенно снижает темпы создания новых сортов. Кроме этого, как считает Жученко (2001), повышение эффективности современного селекционного процесса предполагает контроль целого комплекса популяционно-генетических характеристик. К числу важнейших из них следует отнести: подбор пар для скрещивания с учетом их рекомбинационного потенциала, выбор направления скрещивания и условий получения гибридов F1 с учетом разной способности макро- и микроспор к переносу хромосомных аберраций, а также элиминации рекомбинантных гамет в процессе селективного избирательного оплодотворения; выбор фона для выращивания гибридов с учетом влияния факторов внешней среды на уровень и спектр ре комбинационной изменчивости на этапах предмейоза, мейоза и постмейоза; использование эффективных селективных сред для отбора рекомбинантных генотипов на клеточном уровне (In vitro), а также перемещающихся генетических элементов; переноса чужеродной ДНК путем трансгеноза; снижения селективной элиминации рекомбинантных гамет и зигот, и все же прежде всего требует особого международного внимания ряд экологических проблем, таких как засоление почв, вызванное плохо спроектированными и обслуживаемыми ирригационными системами, а также загрязнение почв и поверхностных водоемов, обусловленное в значительной мере избыточным использованием удобрений и химических средств защиты.

В то же время, геном растений имеет большой потенциал в отношении их совершенствования по разным признакам, в том числе и для роста урожайности. Это важный аспект, не принимаемый в расчет «зелеными». Они полагают, что продуктивность сельского хозяйства развивающихся стран и стран с переходной экономикой зависит от социальных и экономических условий, с чем трудно не согласиться, но не учитывают, что сегодня для повышения производительности этого уже недостаточно и нужны новые технологии, необходимые для реализации скрытого в сельскохозяйственных видах генетического потенциала. Лишь они позволят приблизиться к устойчивому сельскому хозяйству, устойчиво функционирующей промышленности и ответственно, к преодолению экологического кризиса.

Почти все наши традиционные продукты питания представляют собой результат естественных мутаций и генетической трансформации, которые служат движущими силами эволюции. Не будь этих основополагающих процессов, возможно, мы все еще оставались бы в донных осадках первобытного океана. К счастью, время от времени мать-природа брала на себя ответственность и совершала генетические модификации. Так, пшеница, которой принадлежит столь значительная роль в нашем современном рационе, приобрела свои нынешние качества в результате необычных (но вполне естественных) скрещиваний между различными видами трав. Сегодняшний пшеничный хлеб — результат гибридизации трех различных растительных геномов, каждый из которых содержит набор семи хромосом. В этом смысле пшеничный хлеб следовало бы отнести к трансгенным, или генетически модифицированным, продуктам. Еще один результат трансгенной гибридизации — современная кукуруза, появившаяся, скорее всего, благодаря скрещиванию видов Teosinte и Tripsacum.

Перспективы решения проблемы голода с использованием традиционных подходов селекции не внушают надежд. К 2015 г. около 2 млрд человек будут жить в бедности. Растениеводы давно пытались решить эту проблему, издавна занимаясь выведением новых, высокопродуктивных сортов, традиционными путями при помощи скрещивания и отбора, то есть путями естественными, главные недостатки которых — ненадежность и малая вероятность получения селекционером того, что он запланировал, и слишком большие временные затраты.

Недостатки традиционной селекции и современные пути их преодоления

Обычно для получения новых сортов и пород животных используют гибридизацию и методы радиационного и химического мутагенеза. Среди проблем, ограничивающих возможности традиционной селекции, можно выделить следующие: желательные гены передаются вместе с нежелательными; приобретение одного желательного гена сопровождается часто потерей другого; некоторые гены остаются связанными друг с другом, что значительно затрудняет отделение положительных свойств от вредных.

Методы радиационного и химического мутагенеза, применяемые в ежедневной   практике   селекционера,   ведут  к  появлению огромного количества неизвестных генетических перестроек. Выведенное в результате таких воздействий растение в случае, если оно жизнеспособно и не имеет выраженных токсических свойств, может нести невыявленные мутации, поскольку мутантные сорта исследуются лишь с целью изучения характеристик, имеющих отношение к решению конкретной селекционной задачи.

Главные достоинства методов генетической инженерии заключаются в том, что они позволяют передавать один или несколько генов от одного организма другому без сложных скрещиваний, причем донор и реципиент не обязательно должны быть близкородственными. Это резко увеличивает разнообразие изменяемых свойств, ускоряет процесс получения организмов с заданными свойствами, а также, что очень важно, облегчает прослеживание генетических изменений и их последствий. А самое главное, измененный сорт или порода сразу адаптирован — вписан в конкретные условия окружающей среды.

Представить завтрашний день сельского хозяйства трудно, но с большой определенностью можно говорить о стратегических задачах, которые хотелось бы решить. Тут надо понимать, что цели природы и человека различны. Для людей, скажем, выгоднее получить пшеницу или ячмень с крупным зерном, с легкой обмолачиваемо с тью. Природе же важнее не размер, а количество зерен; а вот склонность к легкому обмолачиванию — этот признак может оказаться для растения даже вредным.

Такой разнобой во взглядах природы и человека, могущество которого все возрастает, не может не сказаться губительно на биосфере. Из огромного разнообразия растений, кормивших человека 10 тысяч лет назад, сегодня основу питания (85%) составляет всего пять видов растений. А из 5 тыс. окультуренных видов растений человек в настоящее время для удовлетворения 90% своих потребностей в продовольствии использует лишь 20, из которых 14 принадлежит всего лишь к двум семействам.

Чтобы понять, как далеко зашли эволюционные изменения под влиянием селекционной работы человека, достаточно взглянуть на кукурузные початки (их возраст — 5 тыс. лет), найденные при раскопках в пещере Теуакан (Мексика). Они примерно в 10 раз меньше, чем у современных сортов. И это реальный пример работы генетиков и селекционеров.

Г.Д. Карпеченко (1927) впервые синтезировал новую неизвестную в природе видовую форму Raphanobrassica (рафанобрассика), константный полиплоидный межродовой гибрид между редькой и капустой. Совершенно справедливо Н.Н. Воронцов (1999) называет синтез рафанобрассики первым случаем конструирования нового генома, того, что в конце 70-х стало называться генетической инженерией.

Через три года шведский генетик Арне Мюнтцинг впервые осуществил ресинтез дикорастущего в природе аллополиплоидного вида багульника.

Природная хромосомная инженерия создает гибридогенные полиплоидные комплексы видов, открытые и изученные американским ботаником Ледьярдом Стеббинсом. В этих комплексах геномы нескольких диплоидных исходных видов могут вступать между собой во всевозможные гибридные аллотетраплоидные комбинации. Объединяться могут сразу несколько геномов, так что предком одного вида может ни один, а несколько видов, как, например, у обычной мягкой пшеницы, у видов хлопчатника.

Гибридогенное видообразование встречается и у позвоночных и беспозвоночных животных. Но животные размножаются половым путем, который у межвидовых гибридов затруднен или даже невозможен. Поэтому межвидовые гибриды животных размножаются необычными способами, которые мы могли бы назвать репродуктивными технологиями. К ним относятся: партеногенез (спермии не нужны для развития яйцеклеток видов-гибридов); гиногенез (спермии нужны лишь для активации развития, но развитие происходит на основе женских гамет и наследование матроклинно); и собственно гибридогенез, когда гибридный вид образуется на основе гибридных оплодотворенных яйцеклеток, но один из родительских геномов избирательно устраняется.

Благодаря, в частности, селекционной работе, древнее природное разнообразие местных видов заменено ныне небольшим числом специально выведенных и почти насильно внедряемых сортов, выращиваемых на обширнейших пространствах. 96% урожая гороха в США получается всего-навсего от двух его разновидностей, а 71% урожая кукурузы — от шести ее сортов. Великолепные по продуктивности растения используют, но они, к сожалению, становятся все более подверженными различным заболеваниям, таким, к примеру, как картофельная гниль. Растения приходится усиленно «лечить» пестицидами и прочими опасными для окружающей среды и самого человека средствами. Одна из важнейших целей ДНК-технологии — не менять среду под растения, а наоборот — менять растение таким образом, чтобы оно было наиболее адаптивным к этой среде. Кроме того, необходим возврат растительного царства к многообразию, к неоглядному богатству видов. Очевидно, однако, что при этом главным остается обеспечение доступа к продовольствию всех социальных групп населения («здоровье нации»), поскольку на покупку продовольствия расходуется до 70% доходов населения

Селекционеры, наблюдая за работой биоинженеров, испытывают чувство зависти от простоты и ясности экспериментов. Хотя многие из них считают, что генетическая инженерия — это своего рода увлечение, мода, что она пройдет, и никакой особой пользы практика от нее не получат.

Медлительные, терпеливые, упорные, свято соблюдающие правила, издавна декретированные природой, деревенского, так сказать, склада селекционеры подозрительно относятся к поспешным, явно урбанистическим методам биоинженерии. Их раздражают рвение, спешка, рекламный шум, чрезмерные обещания, явное желание нарушить ритуалы, поскорее опрокинуть поставленные природой барьеры, обойти их, пролезть с «черного хода», зайти «вне очереди». Этот старый спор между сельской неторопливостью, основательностью и городской суетой и необязательностью, видимо, разрешится не скоро, потому что биоинженер, в конечном итоге, передает свои находки селекционерам, именно они должны судить, удался или нет очередной генный «фокус».

Каких бы чудес ни напридумывали молекулярные биологи, рассуждают селекционеры, нам решать, что у них получилось. Потому-то скоростные методы переделки сельского хозяйства — это миф. Для получения у данного растения нужных признаков требуется от пяти до пятнадцати лет. А потом еще, по крайней мере, от трех до восьми лет работы традиционными методами, чтобы закрепить эти признаки у растения, а потом его районирование и тд. Но следует признать, что биоинженерия в отличие от традиционных методов селекции обладает наибольшей возможностью технологизировать достижения фундаментальных знаний, и, в частности, молекулярной биологии. Кроме того, методы биотехнологии являются качественно новым инструментом для непосредственного изучения структурно-функциональной организации генетического материала. А это, в свою очередь, позволяет предположить, что генетическая инженерия растений окажет наибольшее влияние при селекции на такие адаптивно и хозяйственно ценные признаки, как интенсивность чистого фотосинтеза, индекс урожая и др. Наиболее перспективные направления в области защиты растений включают получение трансгенных сортов, устойчивых к гербицидам и вредным видам, биопестицидов, новых форм микроорганизмов и др. Очевидно также, что сама генетическая инженерия, став экспериментальным полигоном эволюции, будет непрерывно совершенствоваться и усложняться, расширяя возможности человека в целенаправленном преобразовании организмов, и вполне вероятно, что дальнейшее развитие методов молекулярной биологии, в том числе трансгеноза, позволит поднять современную селекцию растений на качественно новый уровень.

Хотя для генетической инженерии существует масса трудностей, например, в том, что селекция новых сортов затрагивает свойства растения, контролируемые не одним, а сразу многими генами. Например, ученые хотят сконструировать растения, способные сами себя «удобрять».

 Настойчиво пропагандируется мысль передать зерновым культурам — основной пище человечества — группы генов nrf из бактерий, умеющих улавливать атмосферный азот, и тем самым избавиться от необходимости вносить в почву азотные удобрения. И это будет. Но когда — пока неизвестно, потому что переносить необходимо целый комплекс по крайней мере из 17 генов. И если будет все удачно, заставить работать все эти гены (например, в геноме пшеницы), то, по оценкам специалистов, такие растения снизят урожайность на 20-30 процентов сухого веса из-за необходимости нести дополнительные энергозатраты на фиксацию азота...

Проблема производства и потребления генетически модифицированных растительных продуктов становится все более острой. Сторонники широкого употребления в пищу подобного рода изделий говорят, что они совершенно безопасны для человеческого организма, а преимущества их огромны — большие урожаи, повышенная устойчивость к переменам погоды и вредителям, лучшая сохранность. В то же время, в геноме растений есть дальние связи между генами, и вмешиваться в работу генной машины следует очень осторожно. Можно ненароком перевести генные механизмы растения из одного режима в другой, вовсе нежелательный для человека.

Хотя и в традиционной селекции масса таких примеров, не говоря уже о том, сколько селекционеров вообще ничего не получили. Известна, например, история с геном opaque 2. Этот ген захотели использовать в США (университет Пардью) для обогащения зерен кукурузы аминокислотой лизином, что резко бы повысило питательную ценность кукурузного зерна.

Перенос гена удался, радость была великая, но... урожайность у трансформированных сортов упала на 15 процентов, а сами зерна стали хрупкими и чувствительными к возбудителям болезней. Конечно же, очень жаль, что и вооруженная генно-инженерными методиками селекция не может одномоментно решить все проблемы, однако она гарантирует хотя и скромные, но прочные, непрерывные и эффективные успехи в сельском хозяйстве.

Интенсивный путь развития аграрной цивилизации

Новый взгляд на эволюцию. «Генетическая инженерия» в природных экосистемах

Следует подчеркнуть принципиально важное обстоятельство: одно из важных положений современной генетики состоит в открытии способности наследственной системы к «естественной генетической инженерии». В клетке существует режим генетического поиска и реорганизации структуры и функции генома.

Термин «вирус» этимологически обозначает «яд». Вплоть до 60-х годов XX века вирусы преимущественно рассматривались как болезнетворное начало. Но изучение вирусов многоклеточных организмов и бактерий (бактериофагов), открытие большого сходства мобильных генетических элементов с вирусами, а затем выявление повсеместного распространения вирусных последовательностей в геноме каждого изученного вида млекопитающих изменило представление о вирусах.

Представление о повсеместности вирусов в биосфере, высказанное в середине 70-х годов (Жданов, Тихоненко, 1975), в настоящее время полностью подтверждено. Вирусы вездесущи. Может быть, именно поэтому их можно обнаружить при любом заболевании (у здоровых их, как правило, не ищут). У человека только в клетках кишечника число обнаруженных в норме и при патологии вирусов больше 120. К 1970-м годам стала ясна суть респираторных — «простудных» заболеваний, переносимых большинством горожан, которые являются отражением эпидемических вспышек размножения вирусов.

Целенаправленное изучение путей распространения вирусов в природе привело в начале 80-х годов XX века к получению новой информации. Например, такие вирусы, как вирус полиомиелита, которые из-за своего видимого патогенного эффекта считались исключительно нейротропными, оказались обнаруженными в сточных водах и, стало быть, входят в группу энтеровирусов. Сточные воды оказались источником вспышки одной из форм вирусного гепатита, детского гастроэнтерита.

Пути распространения вирусов в биоценозах, и соответственно, пути горизонтального межвидового переноса генетического материала, поразительны. Достаточно сказать, что РНК-содержащий вирус гриппа переносится водоплавающими перелетными птицами, но обнаружен и у китов и у планктонных организмов (Жданов, 1990).

В эволюционном аспекте вирусы в природе являются самым мощным селективным фактором и самым мощным генератором наследственного полиморфизма, возникающего в результате популяционно-генетических взаимодействий типа паразит-хозяин.

Другой важный фактор в эволюции — бактерии. Миллиарды лет бактерии были единственными обитателями биосферы. Ни человека, ни животных, ни высших растений не было на Земле, а бактерии уже были. Да они и сейчас настоящие «хозяева планеты». Бактерии — истинные космополиты: они завоевали толщи почв и все водные бассейны, они поселились и в нас самих. Они создавали и создают месторождения полезных ископаемых, они же превращают останки живых существ в материал для новой жизни, помогают нам переваривать пищу и готовить ее. Они способны и убивать нас, заразив болезнями. Биомасса этих мелких существ на много порядков превышает биомассу всех земных млекопитающих вместе с человеком.

Горизонтальный перенос генов от одного организма в другой являлись существенным механизмом эволюции, в основном, у бактерий. Этот факт стал очевидным в последние несколько десятилетий.

Джошуа Ледерберг в 1952 году ввел понятие «плазмида». Он обнаружил в кишечной палочке, кроме основной спиралевидной, вытянутой во весь свой немалый рост ДНК, еще и маленькие, свернутые в кольцо ДНК. О плазмидах заговорили медики, когда в 1959 году было доказано, что неэффективность многих антибиотиков обусловлена плазмидами, несущими гены устойчивости к антибиотикам. Плазмиды легко переходят от бактерии к бактерии, делая их невосприимчивыми к лекарствам. К примеру, вырабатываемый плазмидами фермент пенициллаза разрушает пенициллин, спасая бактерии от гибели. Что, конечно же, осложняет лечение больных.

Детальные наблюдения характера возникновения опосредованной плазмидами устойчивости сделаны в Японии и Англии. В 1945 г. в Японии для борьбы с дифтерией стали применять сульфаниламид. Он был высокоэффективен только первые 5 лет. Вскоре появились устойчивые штаммы дифтерийной палочки, а уже некоторое время спустя 80-90% изолятов были устойчивыми. Затем сульфаниламид заменили антибиотиками. Но уже в 1952 г. от больного дифтерией был выделен штамм дифтерийной палочки, одновременно устойчивый к тетрациклину, стрептомицину и сульфаниламиду. А в 1964 г. половина всех бактериальных штаммов, выделенных из больных дифтерией, несла гены устойчивости одновременно к четырем антибиотикам. Эти гены устойчивости были собраны в одной плазмиде, способной распространяться среди бактерий горизонтально.

Гены плазмид, в свою очередь, могут перекочевывать на хромосомы клеток-реципиентов. Считают, что таким путем в кишечную палочку попали гены, кодирующие ферменты инактивации антибиотиков. Возможно, эти гены впервые появились у почвенных бактерий, живущих рядом с грибами-продуцентами антибиотиков. В почвенных бактериях в геноме плазмид находятся детерминанты устойчивости к тяжелым металлам. Из природных резерватов плазмиды с транспозонами, несущие гены устойчивости, попадают к бактериям животных и человека и с помощью их распространяются по всему миру.

То, что затрудняло работу медиков, пригодилось генным инженерам. А им нужны были переносчики реконструированных молекул ДНК в живые объекты. Правда, вначале на эту роль прочили вирусы-бактериофаги. Но, проникнув в клетку, вирус ведет себя как опасный хищник. Он переключает ресурсы клетки на удовлетворение своих нужд и примерно через полчаса губит ее. Иначе поступает плазмида — в отличие от вируса, она не убивает клетку-хозяйку. Плазмида и приютившая ее клетка осуществляют симбиоз. Плазмида защищает бактерию от, например, пенициллина. Клетка предоставляет плазмиде ресурсы для питания, размножения. Все эти особенности симбиоза бактерий и плазмид (особенно способность плазмид переходить «из рук в руки», от одной клетки к другой) оказались источниками генно-инженерных методов.

Плазмидами Д. Ледерберг предложил обозначать все внеядерные генетические элементы, способные к автономнойрепликации. Сюда входят «каппа-частицы» у парамеций, экзогенные вирусы и т.д. Взгляд на плазмиды как на симбионты и альтернативный взгляд на них как на составную часть генома, согласно Д. Ледербергу, зависит от того, насколько широко исследователь трактует границы генома и наследственной системы организма.

Именно особенности жизненных циклов вирусов, плазмид и бактерий привело в дальнейшем к созданию так называемых «векторов» — искусственно сконструированных молекул наследственности, которые могут переносить чужеродный материал от одного организма к другому.

Какие генно-инженерные приемы подсмотрены в природе

Благодаря перемещающимся элементам, генофонды всех организмов потенциально составляют общий генофонд всего живого. Реализация этой потенции, т.е. передача генов между разными таксонами, детально документирована. У млекопитающих и птиц практически идентичные провирусные последовательности появились уже после их эволюционного обособления. Поток генов между далекими организмами является реальностью. Вопрос заключается только в том, насколько часто организмы присваивали чужеродные гены в качестве «благоприобретенных собственных функциональных генов».

Наглядным примером горизонтального обмена между прокариотами и высшими эукариотами являются результаты исследований представленности в прокариотических геномах нуклеотидных последовательностей, типичных для эукариот (табл.1). Из этой таблицы следует, в частности, что в геноме симбионта человека, кишечной палочки, примерно 17% ДНК имеет эукариотическое происхождение. Хорошим примером естественной генетической трансформации является агробактериальная трансформация растительных клеток. Отличительная черта бактерий рода Agrobacterium (A.tumefaciens, A.rhizogenes) — способность вызывать развитие так называемых корончатых галлов (своего рода опухолей) у большого круга двудольных растений. При этом происходит перенос фрагмента ДНК агробактерии в геном растительных клеток. Такая клетка со встроенным участком агробактериальной ДНК продуцирует ряд органических веществ, служащих для агробактерии специфическими источниками углерода и азота. Такой перенос — уникальный природный процесс обмена генетической информацией между бактерией и растением, и именно его ученые взяли на вооружение для получения трансгенных растений, встраивая целевой ген в участок агробактериальной ДНК, переносимый в растение.

Эффективность трансформации растительных клеток может быть увеличена за счет использования штаммов A.tumefaciens, обладающих повышенной вирулентностью по отношению к данному виду растений. Тем не менее, частота трансформации весьма низка — только одна из 10 тысяч растительных клеток становится носителем рекомбинантной ДНК.

Возможно около 20 способов проникновения и межвидовой миграции генетических элементов, в их числе трансформация, трансдукция, перемещение транспозонов, плазмид, вирусов, неполовой обмен хромосомами и образование симбиотических ассоциаций. Информационная емкость переноса информации, выраженная в генах, варьирует от единиц до сотен и тысяч в случае плазмид и симбионтов.



Под влиянием стресса резко увеличиваются частоты горизонтального обмена материалом наследственности между бактериями, у растений — частоты перекрестного опыления у самоопылителей. В последние годы в различных моделях стресса у многих видов высших организмов наблюдают увеличение частот рекомбинационных событий, транспозиций, различных мутационных событий. Отчетливые данные о связи дестабилизации генетического материала с действием стрессирующих факторов, полученнные Б. МакКлинток, впоследствии привели к развитию представлений о системах «природной генетической инженерии» (Shapiro. 1992,1995).

Изначально термин «генетическая инженерия» применяли для обозначения целенаправленной манипуляции наследственными детерминантами с целью изменения существующих видов. В настоящее время этим термином обычно обозначают генетические манипуляции, с помощью которых формируется организм, имеющий новую комбинацию наследуемых признаков. Иначе ДНК-технологии можно определить как отрасль биологии, которая изучает явления и конструирование наследственности и изменчивости. Современный этап ДНК-технологий неразрывно связан с необходимостью  увеличения  источников благосостояния  и здоровья человечества. ДНК-технологии стремительно увеличивают наши знания в одной из наименее исследованных областей — наследственности и законов ее изменения естественным и экспериментальным путем.

Свыкшись с материальностью генов, человек, естественно, тут же захотел заняться генной хирургией. Для этого в природе имеются ферменты рестриктазы, с высокой точностью разрезающие молекулу ДНК в определенных сайтах (сочетаниях нуклеотидов), и ферменты лигазы, «сшивающие» такие разрывы. Именно эти ферменты послужили основой для создания строго запланированных генных конструкций.

Использование рекомбинантных (перестроенных) ДНК различного происхождения составляет основу ДНК-технологий. Теоретически все 30-40 тысяч структурных генов человека и животных доступны теперь экспериментальному анализу. Поэтому желательна идентификация всех генов; составление карты тканеспецифичности их экспрессии; идентификация регуляторных областей генов; построение глобальной регуляторной карты генома; классификации генов по структурным и биохимическим функциям их продуктов; идентификация всех потенциальных белков и доменов; анализ распределения полиморфизма и мутаций; определение эволюционных и популяционных взаимосвязей; создание коллекции генетического материала и тд.

Устойчивость нити ДНК в составе хромосом регулируется целой системой ферментов, контролирующих три матричных процесса — репликацию, транскрипцию и трансляцию, и три собственно генетических процесса — репарацию, рекомбинацию и сегрегацию нитей ДНК и хромосом. Белковые продукты «генов метаболизма ДНК» образуют комплексы, которые следят за устойчивостью нитей ДНК, надежностью их репликации и рекомбинации, корректируют однонитевые и двунитевые повреждения. Степень активности этих комплексов весьма чувствительна к физиологическому статусу клетки. Ю.Я. Керкис (1940) впервые показал, что спонтанные наследственные изменения возникают за счет нарушения внутриклеточного метаболизма и физиологического гомеостаза. Устойчивость ДНК и темп мутаций могут в случае клеточного стресса меняться в десятки и сотни раз.

Началом эры генной инженерии растений принято считать 1973 год, когда впервые был проведен целенаправленный перенос гена. Фактически генная инженерия продолжает направление традиционной селекции сельскохозяйственных культур, однако достигает поставленных целей намного быстрее. Основные отличия генетической инженерии от традиционной селекции заключаются в том, что улучшение свойств культурных растений достигается либо улучшением существующей, либо созданием новой генетической вариации. При использовании традиционных методов скрещивания гарантия получения искомой комбинации генов, то есть желаемого признака у растения, практически отсутствует.

Прогресс современной науки во многом определяется и в решающей степени зависит от экспериментальной и практической реализации новых идей и подходов в клеточной и молекулярной биологии. Химерные и трансгенные животные и растения — это наиболее яркое подтверждение потенциальных возможностей фундаментальной и прикладной науки. Такие организмы стали основными инструментами в исследованиях функций генов, процессов дифференцировки, эмбрионального развития, клеточной гибели и старения. Несомненный прорыв в деле создания химерных и трансгенных организмов связан с разработкой ЭСК-технологий и микрохирургической техники работы на изолированных зародышах. В этих технологиях эмбриональные стволовые клетки стали связующим звеном между системами in vitro и in vivo, что дало возможность легко переносить результаты исследования с клеточного уровня на уровень целого организма. При этом значительно повысилась эффективность метода трансгеноза — до 40-50% по сравнению с 1% при использовании техники инъекции чужеродной ДНК (генов) в пронуклеусы зародыша на стадии зиготы.

ДНК-технологии позволяют исследовать и направленно изменять материал наследственности на разных уровнях его организации — генном, хромосомном, геномном, популяционно-генетическом. Интересно, что в смысле управления наследственностью «генетическую инженерию» использовали в течение тысячелетий безымянные селекционеры, благодаря которым еще в эпоху неолита и было введено в культуру абсолютное большинство возделываемых в настоящее время видов растений.

Переходя непосредственно к описанию методов генетической трансформации, отметим, что на сегодняшний день молекулярная генетика располагает значительным набором знаний и приемов для осуществления переноса генов из одних организмов в другие. Технология создания трансгенных растений включает большое количество этапов, среди которых можно выделить: получение целевых генов, создание векторов; трансформацию растительных клеток; подтверждение трансформации молекулярно-биологическими методами — обнаружение функционирующего целевого гена; регенерация целого растения из трансформированных клеток.

Подготовительный этап: конструирование вектора. На первом этапе конструирования рекомбинантной ДНК готовят вставки, пригодные для последующего соединения с вектором. В настоящее время наиболее часто используются 3 метода их получения: из фрагментов геномной ДНК; путем ферментативного или химического синтеза фрагментов ДНК; из сегментов ДНК, полученных с помощью ферментативного копирования РНК-матрицы in vitro.

В качестве вектора, которым может быть любой небольшой внехромосомный элемент (плазмида, ДНК фага или вируса), для трансформации растительных клеток обычно используют бактериальные плазмиды.

Следует отметить, что в большинстве случаев целевой ген подвергается модификации, поскольку, несмотря на универсальность генетического кода (он одинаков для всех организмов вне зависимости от уровня их организации), состав триплетов, кодирующих одни и те же аминокислоты у организмов, принадлежащих к разным видам, имеет некоторые отличия.

Замена кодонов никоим образом не сказывается на первичной структуре белка, в то время как экспрессия гена может быть усилена в сотни раз. Необходимый уровень экспрессии целевого гена в клетках растения достигается посредством использования соответствующих регуляторных элементов, контролирующих работу гена, — промоторов и терминаторов.

Следует отметить, что среди известных в настоящее время промоторов один из самых сильных — промотор 35S вируса мозаики цветной капусты, поэтому в большинстве случаев именно его используют в качестве регулятора экспрессии целевого гена.

Таким образом, вносимая генетическая конструкция (вставка или кассета экспрессии) — это группа функционально связанных участков ДНК, состоящая из высокоактивного промотора, непосредственно за которым располагаются соответствующий целевой ген и терминатор транскрипции. После получения вектора и вставки начинается процесс конструирования рекомбинантной ДНК. Полученные молекулы ДНК вводят в бактериальные клетки для клонирования, что приводит к накоплению рекомбинантной ДНК. Эффективное увеличение количества ее копий возможно лишь при обеспечении оптимальных условий существования вектора, использующего метаболиты, ферменты и другие белки клетки-хозяина, а также ее аппарат белкового синтеза, поэтому основной инструмент молекулярного клонирования — совместимая комбинация хозяина и вектора. Наиболее широко применяются такие сочетания, когда в роли хозяина выступает штамм E.coli, а в роли вектора — его плазмида. Проникновение вектора в живые клетки E.coli проходит наиболее эффективно при условии повышенной проницаемости клеточных мембран, обусловленной, например, их локальным разрушением. Нарушение их целостности достигается либо воздействием электрического тока — электропорацией, либо посредством обработки клеток определенными химическими веществами, после чего перенос вектора происходит в течение нескольких минут. Векторы обычно содержат маркерные гены, благодаря которым осуществляется отбор клеток с измененным генотипом. Например, клетки, чувствительные к определенному антибиотику или токсину, можно использовать в комбинации с векторами, содержащими гены устойчивости к этим агентам. Выращивая микроорганизмы в условиях, при которых проявляется зависимость от маркерных генов, можно отобрать и размножить клетки, несущие требуемый генетический материал.

Методология прикладного использования ДНК-технологий

ДНК-технология или генная (генетическая) инженерия — направление исследований в генетике, в рамках которого разрабатывают приемы, позволяющие по заранее намеченному плану перестраивать геном организмов (совокупность генетических элементов организма), изменяя в нем генетическую информацию. С помощью рестриктаз и лигаз получают перестроенные (химерные) молекулы ДНК. Их еще называют рекомбинантными — полученными в результате объединения in vitro в природе никогда вместе не существующих фрагментов ДНК (например, ДНК бактерии и растения). Живую систему для размножения рекомбинантных молекул выбирают среди бактерий. Получение рекомбинантных ДНК в количестве, необходимом для проведения генетической модификации, позволяет перейти непосредственно к ключевому этапу получения ГМ культур: трансформации растительных клеток. В идеале трансформационная система должна отвечать определенным условиям: быть простой, эффективной и дешевой. Однако, несмотря на сравнительно широкий выбор методических приемов, всем требованиям не соответствует ни один из них. Тем не менее в настоящее время для производства трансгенных культур в промышленных масштабах в основном применяются два способа модификации растительного генома — агробактериальный (то, как это делается в природе, см. выше) и баллистический, баллистическая трансформация растительных клеток (еще называемый микробомбардировкой, методом ускорения частиц, биолистикой — термин, произошедший от объединения слов «биология» и «баллистика») состоит в «обстреле» растительных клеток золотыми или вольфрамовыми частицами, которые играют роль переносчика рекомбинантной ДНК. В сущности, микрочастицы могут быть из любого химически инертного металла с достаточно высокой молекулярной массой (золото, вольфрам, палладий, родий, платина, индий), чтобы не образовывать с ДНК металлорганических комплексов и обладать достаточно высокой кинетической энергией для эффективной пенетрации клеточной стенки. Частицам размером 1,5-3 микрона, конъюгированным с ДНК, придается скорость 300-600 м/сек посредством электрического разряда или декомпрессии в направлении клеток-мишеней, подлежащих трансформации. Несмотря на то, что эффективность этого способа невысока (не более 15%), баллистический метод — весьма распространенный прием трансформации однодольных растений.

В последнее время разработан и успешно применен комбинированный метод трансформации, названный агролистическим. Он основан на объединении баллистического и агробактериального способов и заключается во введении в геном растения каким-либо физическим методом (в большинстве случаев баллистическим) чужеродной ДНК, включающей агробактериальные гены.

Конечный этап — получение трансгенных растений, как правило, преодолевается легче, чем предыдущие процедуры. Благодаря тому, что многие клетки растений тотипотентны, то есть из любой единичной клетки может вырасти целое плодоносящее растение, трансгенные растения получают из трансформированных клеток.

Культивирование растений с модифицированным геномом включает несколько серий пересевов на селективных средах. Длительность регенерации трансформированных растений достигает нескольких месяцев, причем все это время они находятся в среде с высокими концентрациями селективных веществ. Как правило, применяются маркерные гены двух основных типов — селективные и репортерные. Селективные придают растениям устойчивость к антибиотикам или гербицидам, позволяя трансформированным растениям расти в условиях действия селективных агентов. Репортерные гены детерминируют синтез нейтральных для клеток белков, наличие которых в тканях может быть легко установлено. При получении генетически модифицированного растения, устойчивого к пестицидам, ген устойчивости выступает как в роли целевого, так и селективного гена.

Присутствие маркерных генов, особенно устойчивых к антибиотикам, служит одним из главных доводов против использования трансгенных продуктов. Потому-то и был разработан и теперь активно применяется ряд методических подходов, обеспечивающих элиминацию маркерного гена, когда фактически он уже не нужен.

После получения целого трансгенного растения проводится анализ геномной ДНК растений, направленный на то, чтобы определить присутствие  целевого  гена.  Он  проводится  различными  путями. В большинстве случаев это достаточно сложные и дорогостоящие лабораторные методы, например, ПЦР-анализ, рестрикционный анализ и др. Заключительная стадия лабораторного тестирования ГМ растений включает биологические исследования, направленные на подтверждение стабильного фенотипического проявления целевого признака.

С использованием описанных выше подходов к настоящему времени в мире созданы и доведены до испытаний в полевых условиях ГМ формы сельскохозяйственных растений, относящиеся более чем к 50 видам. Так, получены трансгенные формы томатов (более 260), сои (более 200), хлопчатника (более 150), тыквенных растений (более 80), табака (более 80), а также пшеницы, риса, подсолнечника, огурцов, салата, яблонь и других (более 70). Из них значительную часть представляют растения, устойчивые к насекомым-вредителям и гербицидам.

Большинство производящихся в настоящее время в промышленных объемах ГМ сельскохозяйственных растений (или растений первого поколения) имеют свойства, обеспечивающие повышение урожайности или облегчение уборки, хранения, переработки урожая. Эти качества позволяют снизить применение гербицидов и инсектицидов, что оказывает положительное влияние на окружающую среду, сократить количество технологических операций при переработке, а также уменьшить потери урожая, повысить качество продукции, сэкономить средства и материальные ресурсы.

Прикладные ДНК-технологии: достижения и перспективы

Основные задачи современной селекции

Рассматривая возможности современной селекции и генетической инженерии, Жученко (2003) определяет принципиально новые приоритеты самой селекции растений, вытекающие из их современного понимания:

• роли интегрированности генома у высших эукариот, проявляющейся в формировании блоков коадаптированных генов и сохранении их status quo при передаче наследственной информации от одного поколения другому;

• необходимости перехода от управления изменчивостью моногенных признаков к комбинаторике количественных (полигенных) признаков, многие из которых относятся к хозяйственно ценным;

• первостепенной роли мейотической рекомбинации (а не мутаций) в формировании потенциальной, свободной и доступной отбору генетической изменчивости у цветковых растений;

• роли абиотических и биотических факторов внешней среды, определяющих не только направление и темпы естественного отбора («формирующее») влияние биоценотической среды), но и выступающих в качестве индукторов генетической изменчивости (мутационной, рекомбинационной, репарационной, транспозиционной);

• необходимости сочетания в сортах и гибридах высокой потенциальной продуктивности, устойчивости к действию абиотических и биотических стрессоров, а также продукционных и средообразующих (почвоулучшающих, фитомелиоративных, фитосанитарных, ресурсовосстанавливающих, эстетических и др.) функций;

• важности развития новых направлений селекции, включая фито- и биоценотическое, биоэнергетическое, экотипическое, экологическое, симбиотическое, а также апомиктическое, гаметное (гаплоидия позволяет фиксировать последствия мейотической рекомбинации, а апомиксис, связанный с полиплоидией, используется для уменьшения зависимости продуктивности растений от неблагоприятных условий внешней среды.) и др.;

• возможности использования «доместикационного синдрома» с целью введения в культуру новых видов и экотипов растений (экологическая и экотипическая селекция).

Человечеству требуется все больше продуктов питания и промышленного сырья, получаемого из растений. Поэтому усовершенствование растений, предназначенных для использования в сельскохозяйственном производстве, сейчас является наиболее интенсивно развивающейся областью применения ДНК-технологий. Традиционная селекция имеет существенное ограничение. Ее приемы позволяют получать гибриды только родственных растений. Скрещивать картофель разных сортов можно, но растения разных видов (за редчайшими исключениями) нельзя, например нельзя получить гибрид сливы и яблони. Ветви древа жизни, пройдя долгий эволюционный путь, разошлись друг от друга очень далеко. Их развитие долго шло независимо. Потому-то разные виды не «переплетаются» меж собой. И нельзя скрестить кошку с собакой, человека с обезьяной. И хотя есть мул, гибрид осла и лошади, он бесплоден, так же как и гибрид льва с тигрицей.

Природа воздвигла между далекими видами непреодолимый барьер, который мешает селекционной работе. Фактически селекционеры тасуют одни и те же гены. Селекционерам удалось получить гибрид капусты и редьки, но, к их глубочайшему разочарованию он имел корни капусты, а ботву — редьки! А вот ДНК-технологи — генные инженеры — почти с первой попытки смогли сотворить гибрид свеклы со шпинатом и, если потребуется, смогут вырастить все что угодно и на заказ.

В США и Канаде гибридами ГМ рапса заняты большие площади. Такие сорта важны и для Восточной Европы, где использование рапсового масла могло бы оказаться очень перспективным. Добавление всего 1% этого масла к дизельному топливу значительно уменьшает загрязнение окружающей среды соединениями серы, которых особенно много в выхлопах дизельных двигателей. Кроме того, это яркий пример по сути безотходного (индустриального) сельского хозяйства — рапсовое масло используют в промышленности, а жмых идет на корм скоту.

Появилась возможность создавать съедобные сорняки. Биоинженерия меняет не только растения, но и наши представления о них. Возможно, что завтра, вместо того чтобы ломать голову, как избавиться от сорняков, мы будем их есть.

ГМ растения, устойчивые к насекомым-вредителям

В процессе получения ГМО с помощью трансгеноза первостепенное внимание должно быть уделено повышению устойчивости сортов и гибридов к болезням, вредителям и сорнякам. О важности этого направления селекции свидетельствует уже тот факт, что общее число потенциально вредоносных для агроэкосистем видов достигает 80-100 тыс., в том числе свыше 30 тыс. возбудителей грибных, бактериальных и вирусных заболеваний, около 10 тыс. членистоногих и др. Несмотря на увеличение количества применяемых в сельском хозяйстве пестицидов (например, в США — 400 тыс. т в год), к началу XXI столетия потери урожая составляют в среднем 33%. Общая же цена потерь урожая сельскохозяйственных растений в мире, согласно имеющимся оценкам, только от болезней достигает 50 триллионов долларов в год.

Одним из факторов риска в получении высоких и стабильных урожаев является поражение посевов насекомыми. Так, например, ущерб от поражения посевов кукурузы кукурузным мотыльком (Ostrinia nubialis) в США составляет около миллиарда долларов в год. А тысячи тонн инсектицидов, расходуемых ежегодно, естественно, не очень полезны окружающей среде.

Молекулярные биологи сумели обеспечить организмы иммунитетом к их вредителям. Наиболее распространенным приемом создания инсектицидных растении сейчас является введение в их геном гена Сгу- белка (Bt-токсина), естественного инсектицида, вырабатываемого почвенными бактериями Bacillus thuringiensis. Bt-защищенные растения экспрессируют один или несколько Cry-белков для защиты от чешуекрылых и жесткокрылых вредителей.

Почвенная грамположительная бактерия B.thuringiensis продуцирует в процессе спорообразования кристаллические белковые включения. Эти включения состоят из белков, называемых Сгу-белками. Они обладают селективным действием против узких групп насекомых, причем различные классы белков эффективны для применения против разных насекомых-вредителей. Сгу-белки присоединяются к специфическим участкам клеток пищеварительной системы насекомых и образуют ионоселективные каналы в клеточных мембранах. Это приводит к чрезмерному поступлению воды, клетки разбухают, что приводит к их лизису и последующей гибели насекомого.

Важно иметь в виду, что данный белок термонестабилен, т.е. разрушается при термической обработке продукции. Кроме того, он нетоксичен для позвоночных животных. Препараты из бета-эндотоксина используются уже около полувека в качестве инсектицидов для опрыскивания.

В мире известны тысячи штаммов B.thuringiensis с разнообразными генами и широким потенциалом биологически активных белков. В целом эти штаммы представляют богатейший источник структурных компонентов многочисленных будущих препаратов для борьбы с самыми разнообразными вредителями.

Успехи генной инженерии неизмеримо расширили спектр биологических объектов перспективных в качестве доноров генов. Помимо растений, ими могут быть насекомые, грибы, бактерии, вирусы. Отсюда стремление биотехнологических компаний создавать свои частные банки генов. Так, фирма «Бристайл-Майерс» (США) имеет патенты на многие бактериальные культуры, в числе которых образцы из Индии, а также из Филиппин, Фиджи, Бразилии, Перу и др. По нормам промышленного патентования фирма приобретает монопольное право на их использование.

В настоящее время компаниями «Monsanto», «AgrEvo», «Мусоgеn» и «Novartis» созданы другие трансгенные формы, устойчивые к насекомым, так называемые Bt-растения — соя, хлопчатник, кукуруза.

Специалисты полагают, что применение Bt-растений может иметь не только хорошее коммерческое будущее, но и экологический эффект. Известно, что только 5% внесенного инсектицида срабатывает по назначению, остальные 95% попадают в окружающую среду, уничтожая многие виды насекомых, в том числе и полезных. Сокращение же объемов применения инсектицидов приведет к восстановлению популяций многих полезных насекомых, что, несомненно, положительно скажется на многих видах растительного и животного мира.

По данным Kcy, в Китае получены трансгенные растения более 50 видов, которые включают основные злаки (рис, пшеница, кукуруза, сорго), а также хлопчатник, сою, рапс, арахис, овощные культуры (кочанная капуста, цветная капуста, перец), плодовые (яблоня, цитрусовые, киви), древесные (тополь, эвкалипт, шелковица). Более 100 генов, включая маркерные, использовано в этих экспериментах. Трансгенный табак, устойчивый к вирусам, выращивали уже в 1994 г. на площади 36 000 га. Прошли полевые испытания трансгенные растения хлопчатника с генами Bt или ингибитора протеаз, устойчивые к насекомым, служащие исходным материалом для создания устойчивых к насекомым сортов этой культуры для различных районов Китая. Разработанный для хлопчатника в 1983 г. Жоу (Zhou) метод трансформации по следу пыльцевой трубки с успехом использовался для генетической трансформации риса, пшеницы, сои. Наиболее значительным успехом в Китае считается получение пшеницы, устойчивой к вирусам за счет гена белка оболочки, и устойчивого к насекомым хлопчатника с геном эндотоксина Bt.

Белок Bt активен не только против европейского мотылька кукурузы, но также против юго-западного мотылька и кукурузной моли. Ориентировочные потери от этих основных вредителей кукурузы составляют 800-900 млн долл. ежегодно.

Гербицидустойчивые растения

Современное сельскохозяйственное производство невозможно без применения гербицидов. Применяемые ранее гербициды, как селективные, так и тотального действия, считались сравнительно дорогими и оказывали отрицательное воздействие на окружающую среду, накапливаясь в почве, почвенных водах и произрастающих растениях. Синтезированы гербициды нового поколения, которые значительно более эффективны и поэтому применяются в очень низких концентрациях и быстро разрушаются почвенными микроорганизмами. Однако они являются неселективными и ингибируют рост как сорняков, так и всех культурных растений.

Устойчивость растений к гербицидам может возникать различными путями. Она может быть результатом точечных мутаций генов, кодирующих белок-мишень для данного гербицида. Такие мутации описаны по устойчивости к гербицидам, которые действуют на фотосинтез растений и синтез аминокислот. Эти мутации и являются причиной появления на полях устойчивых сорняков, что приводит к необходимости ротации гербицидов через определенное количество лет, когда устойчивые сорняки накапливаются в количествах, могущих снизить эффективность применения данного гербицида.

Придание растениям устойчивости к тем или иным гербицидам осуществляется разными способами, например путем введения генов, кодирующих белки, не чувствительных к данному классу гербицидов (например, к глифосату, хлоре ульфуроновым и имидазолиновым гербицидам) либо обеспечивающих ускоренный метаболизм гербицидов в растениях (например, глюфосината аммония, далапона).

Устойчивость к глюфосинату аммония. Действующее вещество гербицидов, полученных на основе глюфосината аммония, — фосфинотрицин, ингибирующий глутаминсинтетазу растительных клеток, что приводит к быстрому истощению запаса глутамина в растении, накоплению аммиака, отравлению и гибели растения. Ген устойчивости к глюфосинату кодирует синтез фермента фосфинотрицин ацетилтрансферазы. В результате растение, в которое введен этот ген, обладает способностью продуцировать фосфинотрицин ацетилтрансферазу, разрушающую глюфосинат аммония, и устойчиво к действию данного гербицида.

Устойчивость к глифосату. В настоящее время самый широко применяемый гербицид в мире — глифосат, что повлекло за собой создание ГМ растений, обладающих устойчивостью именно к нему. Он относится к неселективным гербицидам. Механизм его действия основан на ингибировании активности фермента, который катализирует ключевую реакцию в синтезе ароматических аминокислот. В трансгенное растение встроен ген, кодирующий синтез этого же фермента, но не чувствительного к действию глифосата. При его воздействии все растения, не имеющие данного гена, погибают, в то время как ГМ культура нормально развивается.

Устойчивость к гербицидам может быть связана также с амплификацией генов устойчивости. Отселектирована клеточная линия табака, устойчивая к сульфонилмочевинным и имидазолиноновым гербицидам. Фермент-мишень ацетогидоксикислая синтаза этой линии была в 50-780 раз менее чувствительна к гербицидам, чем фермент дикого типа. С помощью гибридизации по Саузерну установлено, что амплификация одного из генов, кодирующих мутантный фермент, достигала примерно 20 копий.

Определена природа устойчивости мутантного фермента, связанная с заменой пролина в 196 положении на серии.

Фермент ацетолактатсинтаза (ALS) является мишенью для ряда гербицидов: сульфонилмочевин, имидазолинонов и триазолпиримидинов. Проведено клонирование гена ALS, его мутагенез in vivo и in vitro и трансформация гербицидустойчивого гена в растения рапса с помощью агробактерии. Отбор по устойчивости к канамицину и непосредственно по устойчивости к хлорсульфурону привел к появлению гербицидустойчивых растений.

Проведены полевые испытания трансгенных линий табака по чувствительности к сульфонилмочевинным гербицидам. В отсутствии обработки гербицидами обе трансгенные линии уступали контролю по урожаю.

При трансфекции протопластов табака геномной ДНК мутанта арабидопсиса, устойчивого к хлорсульфурону, толерантные каллусные линии получены с частотой 4,7x10"*.

Глифосат является активным ингредиентом неселективного гербицида Раундап. Он ингибирует синтез ароматических аминокислот (фенилаланин, тирозин, триптофан) у бактерий и растений, а аrоА ген кодирует фермент-мишень EPSP синтазу (З-энолпирувилшикимат-5-фосфат синтазу), на которую действует глифосат.

Доказательством подобной функции было клонирование аrоА гена Escherichia coli — при его введении в мультиколийные плазмиды наблюдалась 5-17 кратная суперпродукция EPSP синтазы и, как следствие, 8 кратное повышение устойчивости к глифосату. Из кишечной палочки клонирован ген, введение которого в табак привело к получению устойчивых к глифосату растений.

При получении трансгенных растений петунии (Petunia hybrida) с высоким уровнем экспрессии аrоА гена они были устойчивыми к глифосату. Линия сои с агробактериальным геном, слабо чувствительным к глифосату, была очень устойчива к гербициду в полевых условиях, перенося обработку до 1,68 кг/га глифосата без видимых повреждений.

Клонирован также ген фермента глифосатоксидоредуктазы, превращающий глифосат в нетоксичное соединение — аминометилфосфоновую кислоту.

Комбинация двух генов СР4 и GOX использовалась фирмой Монсанто в качестве селектируемых генов при трансформации кукурузы и некоторых двудольных. При микробомбардировке незрелых зародышей микрочастицами вольфрама, покрытыми ДНК плазмиды, несущей СР4 и GOX гены, получены трансгенные растения пшеницы, устойчивые к коммерческим концентрациям глифосата.

В настоящее время изучен ряд штаммов стрептомицетов, которые в качестве вторичного метаболита продуцируют антибиотик биалафос. Биалафос (фосфинотрицин) был впервые выделен в культуре бактерий Streptomyces viridochromogenes в 1972 г. Он представляет собой трипептид и состоит из фосфинотрицина и двух остатков аланина. Биалафос был выделен также из одного штамма Streptomyces hygroscopicus.

Гербицид биалафос (фосфинотрицин) ингибирует глютаминсинтетазу. Ваr ген кодирует фермент, который ацетилирует гербицид, превращая его в нетоксичное соединение. Трансгенные растений с bar-геном приобретают устойчивость к данному гербициду.

Трансгенные растения, устойчивые к гербицидам, используют все шире. Добавление всего одного гена приводит к тому, что растения приобретают устойчивость к гербициду, и обрабатывать посевы становится неизмеримо легче. Нелишне подчеркнуть, что речь идет об «экологически щадящих» гербицидах. Современное сельское хозяйство нельзя себе представить без гербицидов, поэтому ставка должна делаться на те из них, которые быстро разлагаются микроорганизмами в почве. К примеру, разработанный компанией «Монсанто» популярный гербицид «Раундап» примерно через неделю после опрыскивания полностью разлагается микроорганизмами в почве. Важно и то, что при этом удается избежать излишней вспашки, сохраняя структуру почвы и защищая ее от эрозии.

В создании растений, устойчивых к гербицидам, сейчас используют два основных принципа, через которые обеспечивается реализация задачи.

Гиперэкспрессия — значительное повышение синтеза продукта, против которого направлено действие гербицида. В этом случае при использовании гербицида в дозах, летальных для других растений, в ГМ растениях будет ингибирована только часть данного продукта. Оставшегося количества будет достаточно для поддержки функций организма. Поэтому гербицид не окажет на растение летального действия. Примером реализации такого подхода явилась работа (Lermontova, Grimm, 2000) по созданию растений табака, устойчивых к ацифлуорифену. Данный гербицид ингибирует фермент протопорфириноген IX оксидазу (РРОХ), участвующий в синтезе хлорофилла. Авторами было идентифицировано у табака два гена: один — РРОХ-1, кодирующий хлоропластный фермент, и РРОХ-2, кодирующий митохондриальный фермент. После этого растения табака были модифицированы генно-инженерной конструкцией, содержащей ген РРОХ-1, что обеспечивало высокий уровень его синтеза в молодых листьях. В результате трансгенные растения имели повышенный уровень содержания данного фермента, который коррелировал с их повышенной устойчивостью к ацифлуорифену.

Другим путем создания устойчивых к гербициду растений является поиск генов, которые не ингибируются данным гербицидом, и последующее внедрение их в геном культурных растений. В этом случае культура не будет реагировать на использование гербицида вообще, в то время как сорняки будут погибать. Примером данного подхода может служить трансформация путем гомологичной рекомбинации в геном пластид табака гена петунии, обеспечивающего устойчивость к глифосату (Daniell et al. 1998).

Специфической проблемой создания и использования генетически модифицированных культур, устойчивых к гербицидам, является предотвращение возможности переноса генов устойчивости к сорным растениям путем переопыления с дикими родственниками. Интересный подход в решении этой проблемы — использование техник, позволяющих целенаправленно встраивать генно-инженерные конструкции в ДНК цитоплазм этических органелл (митохондрий и пластид). Гены цитоплазматических органелл наследуются нехромосомно по материнской линии. Поэтому они не могут быть переданы с пыльцой диким родственникам, с которыми способна скрещиваться данная культура. Об успешном эксперименте в этом направлении сообщено Daniell et al. (1998).

Здесь была успешно проведена встройка путем гомологичной рекомбинации гена EPSPS петунии, который обеспечивает устойчивость к глифосату, в пластиды табака. ГМ растения окэззлись устойчивыми к гербициду, в то время как контрольные погибли в течение двух недель после обработки.

Площади возделывания ГМ растений, одновременно устойчивых к гербицидам и насекомым, увеличились с 0,1% в 1997 г. до 1% в 1998 г.

Примерами этой группы могут быть кукуруза и хлопчатник, устойчивые к Раундапу и одновременно устойчивые к кукурузному мотыльку и хлопковой совке соответственно.

ГМ растения, устойчивые к болезням

Современная селекция выступает в качестве синтетической дисциплины, широко использующей достижения генетики, ДНК-технологии, физиологии, биохимии, почвоведения, микробиологии, цитогенетики, экологии и других наук, в том числе и агроэкологического районирования и конструирования агроэкосистем. В этой связи большие перспективы представляет сочетание методов традиционной селекции и трансгеноза при создании сортов с вертикальной устойчивостью, а также многолинейных и синтетических сортов. Связано это с тем, что методы генной инженерии позволяют встраивать   в   растение-реципиент   сразу   несколько   разных генов устойчивости, создавая таким образом «пирамиду генов», обеспечивающую комплексную резистентность сорта.

Задача повышения устойчивости культурных растений к стрессовым температурам, воздушной и почвенной засухе, кислым и засоленным почвам, вредителям и болезням стала особенно острой в России и в Украине в настоящее время, в условиях резкого падения общей культуры земледелия, а также в результате снижения количества используемых минеральных макро- и микроудобрений, мелиорантов (извести, гипса и др.) и пестицидов. Однако главное — резкое обострения фитосанитарной ситуации, стремительное распространение таких патогенов, как септориоз, снежная плесень, антракноз, фузариоз колоса, фомопсис, массовые поражения зерновых клопом-черепашкой, саранчой и т.д. В этой ситуации возможны два пути: поиск и создание доноров генов множественной устойчивости и разработка принципиально новых приемов управления генотипической изменчивостью культивируемых растений, в том числе и генетически модифицированных, т.е. методов создания сортов с большей а геоэкологической направленностью — «адресностью», в том числе с повышенными продуктивными, средообразующими и ресурсовоспроизводящими возможностями. Главным приоритетом селекции становится обеспечение устойчивого роста величины и качества урожая в неблагоприятных и экстремальных по почвенно-климатическим условиям зонах. Для каждого сельскохозяйственного региона, района и даже местности предстоит подобрать сочетание культур — «взаимострахователей» и создать соответствующие сорта или соответствующие гибриды. Особое место должна занимать селекция на скороспелость и слабую фотопериодическую реакцию растений. Эффект может достигаться за счет несовпадения во времени и пространстве «критических» периодов онтогенеза растений с действием лимитирующих факторов внешней среды.

Основной фактор, ограничивающий реализацию потенциальной урожайности растений — их болезни. Для 3-4 тыс. используемых человеком «культурных» растений известно около 30 тыс. видов возбудителей: 25 тыс. грибковых болезней, 600 вызывают черви-нематоды, более 200 — бактерии, более 300 — вирусы, и число их растет. У риса и пшеницы известны более 100 возбудителей болезней, у кукурузы — 60, у ячменя и сорго — по 50. Из-за них еще до сбора урожая теряются 10-15% зерна. Различные паразиты, в том числе насекомые, и сорняки доводят объем предуборочных потерь уже до 25-40%. В мире из-за насекомых теряется 14% урожая, заболеваний растений, вызванных червями и грибами, — 12, сорняков — 9%, и 10% уничтожаются грызунами. Предуборочные потери зерновых составляют более 1800 млн. т. А после уборки в процессе транспортировки и хранения гибнут еще 5-25% урожая в зависимости от страны. И получается, что в развитых странах суммарные потери достигают 40%, в развивающихся, по вполне понятным причинам, они превышают более 50% возможного урожая.

Только в 1980 г., по экспертным оценкам, потери злаковых культур до сбора урожая достигли 277 млн. т, что составило 40 млрд. долл., а стоимость утраченного зерна после сбора урожая превысила еще 20 млрд. долл. За последующие два десятилетия никаких заметных изменений в лучшую сторону не произошло. Из этих потерь в какой-то мере оправданными можно считать те, которые вызваны болезнями растений, так как они способствуют выработке у нихиммунитета к другим вредным факторам. К сожалению, даже гипердозы химикатов не помогают справиться с этими болезнями, а лишь способствуют их трансформации в устойчивые формы, а также вызывают хронические интоксикации у людей и животных. Очевидно, что разумнее было бы воздержаться от химической войны с ними, сведя неизбежные потери к минимуму простыми агротехническими приемами.

При атаке патогенов в растениях включается целый набор различных механизмов, результатом работы которых могут быть: полная невосприимчивость к патогену (иммунитет), быстрая программируемая гибель клеток в сайтах атаки патогена (сверхчувствительная реакция) и различные степени поражения вплоть до полной гибели растения.

В обеспечении защиты растений от заболеваний, вызываемых грибами, бактериями и вирусами, участвует ряд ключевых механизмов, модификация которых в настоящее время уже используется для получения устойчивых растений. Перечень таких ключевых этапов защиты растений от заболеваний, индуцируемых патогенными агентами, и примеры их модификаций представлены ниже.

Усиление сигнальных систем, участвующих в формировании иммунного ответа. Растения узнают патоген по сигнальным молекулам — элиситорам. У многих видов растений в ответ на атаку патогенов возникает системно индуцированная устойчивость (SAR), эффект которой может продолжаться неделями и месяцами. Идентифицирован ряд генов SAR. Растения, в которых экспрессировалась ДНК этих генов, характеризовались высоким уровнем толерантности к патогенам. Одной из первых реакций для индукции SAR становится синтез салициловой кислоты.

Одним из самых ранних ответов на атаку патогена является накопление H2O2 и других активных форм кислорода. В дополнение к его окислительному потенциалу, проявляющемуся в гибели или ингибировании клеток патогена, в действие Н202 вовлечен ряд других защитных механизмов. Обнаружен быстрый синтез перекиси водорода при реакции несовместимости не только как локальный пусковой сигнал (триггер) индукции сверхчувствительной гибели клеток, но также как диффузный сигнал для активации генов защиты, например, глютатион-5-трансфераз в окружающих клетках.

Реакция растений на патогены определяется «совместимостью», когда патоген преодолевает механизмы защиты растения и проявляются симптомы поражения, или «несовместимостью», когда механизмы устойчивости исключают или существенно тормозят развитие патогена.

Еще в 1971 г. Флор выдвинул гипотезу, согласно которой реакция «несовместимости» может контролироваться одной парой генов: геном R устойчивости растения и геном Аvr авирулентности патогена.

Эти гены часто объединены в комплексы. Они могут претерпевать рекомбинации, дупликации, делеции и другие перестройки генетического материала хромосом, что приводит к эволюции новых вариантов специфической устойчивости. На проявление устойчивости могут также влиять эффекты дозы генов, неаллельные взаимодействия и эпистаз. Их эффект может также модифицироваться генетическим окружением растения-хозяина. Эти гены-модификаторы не всегда способны сами влиять на реакцию устойчивости, однако, возможно, они образуют систему генов, от кодирующих детерминанты специфического узнавания патогенов, до генов, кодирующих соединения, которые вызывают гибель клеток при несовместимых комбинациях.

В последние годы для получения трансгенных растений, устойчивых к болезням, разрабатывали следующие подходы: синтез значительных количеств антигрибных протеинов, таких как хитиназы и глюканазы, белков, инактивирующих рибосомы, или синтез низкомолекулярных фунгитоксических соединений, таких как фитоалексины и дефензины.

Возможно также получение трансгенных растений, синтезирующих новые фитоалексины или фитоалексины измененной структуры.

Удачно закончились опыты по повышению устойчивости табака к фитофторе Phytophthora parasitica путем встройки гена, кодирующего бетакриптогеин под конститутивным промотором вируса 35S мозаики цветной капусты («сильный» промотор, поэтому его в основном используют при трансгенозе). Трансгенные растения показали повышенную устойчивость к ряду рас данного гриба

В томаты встроены два гена ферментов, катализирующих синтез веществ, повышающих устойчивость к фитофторозу, что привело к повышению на 65% их устойчивости по сравнению с контролем. Другие исследователи трансформировали огурцы геном хитиназы риса, повысившим резистентность к серой плесени.

Управление программируемой гибелью клеток (апоптозом). Апоптоз — контролируемая гибель клеток, которая является одним из защитных механизмов растений, когда в ответ на атаку патогена происходит синтез цитотоксичных соединений в пораженных клетках и локальная гибель клеток — так называемая сверхчувствительность. В процессе развития растений программированная гибель клеток (ПГК) наблюдается при старении органов, созревании плодов, ксилогенезе, старении створок бобов и тд. В клетках, претерпевающих ПГК, отмечается активность протеаз и нуклеаз, деградирующих белки и нуклеиновые кислоты. Эти протеазы включают цистеиновые, металлотиониновые, сериновые протеазы, а также ингибиторы аспарагиновой кислоты.

В настоящее время еще не ясны детали ПГК клеток растений, однако уже показано, что основные этапы ПГК клеток животных и растений одинаковы.

Морфологически это наблюдается в виде сморщивания цитоплазмы, конденсации ядра, образовании везикул мембран. Биохимические изменения включают приток ионов кальция, высвобождение фосфатидилсерина, активацию специфических протеаз, фрагментацию ДНК.

Проникающий в клетку инфекционный агент использует клетки растения-хозяина как субстрат для своего роста, развития и размножения. Одним из путей защиты растений является гибель инфицированных клеток. В то же время, субстратом некоторых грибов являются именно мертвые клетки.

Поэтому предотвращение гибели клеток в некоторых случаях делает невозможным рост и развитие патогена, что препятствует его распространению у растения. В этой связи разрабатываются методы контроля апоптоза.

Разработка приемов управления апоптозом путем использования ДНК-технологий — один из путей повышения иммунитета растений к инфекциям. Это достигается путем введения генов, которые управляют апоптозом.

Приведем несколько примеров таких работ.

Предотвращение гибели клеток в некоторых случаях делает невозможным рост и развитие паразита, чем препятствует его распространению в растении. Гриб Sclerotinia sclerotiorum выделяет токсин, летальный для клеток растений хозяев, и использует вещества мертвых клеток для питания. Растения табака были трансформированы геном нематоды CED-9, который ингибировал апоптоз. Трансгенные растения имели повышенную резистентность к данному возбудителю и останавливали его распространение из точки инокуляции. Данная работа интересна не только тем, что предлагает новую стратегию усиления механизмов защиты растений, но и тем, что демонстрирует общность путей контроля апоптоза у растений и животных (Dickman). Трансгенные томаты, несшие ген бакуловируса р35, ингибирующий апоптоз, также имели усиленную резистентность к возбудителям грибковых и бактериальных инфекций. К подобным выводам пришел Дэвид Гилчрист (Калифорнийский университет), выполняя работу по изучению действия микотоксинов на клетки животных и растений. Он сообщил, что один из токсинов (сфинганин), который вызывает лизис тканей мозга лошадей, также вызывает апоптоз у инфицированных растений. Был также сделан вывод, что грибы создают себе субстрат путем стимулирования апоптоза, поэтому его ингибирование может предотвращать развитие грибной инфекции.

Подход, обратный описанному выше, и заключающийся в стимулировании апоптоза, также может быть использован для защиты растений от инфекций.

Компанией Монсанто разработан способ получения трансгенных растений, устойчивых как к бактериальной, так и грибной инфекции. В картофель вводят грибной ген, кодирующий синтез фермента, окисляющего глюкозу с образованием пероксида водорода. Полученные растения устойчивы и к мягкой гнили, и к фитофторе.

Относительно недавно открыты короткие пептиды, богатые остатками цистеина, обладающие антимикробными свойствами. Они названы дефензинами.

В настоящее время созданы трансгенные растения томатов, картофеля, рапса, моркови, яблони и груши с геном дефензинов редьки. Аналогичная работа проводится по созданию трансгенной капусты и малины.

Устойчивость к вирусам и вироидам

Одним из первых достижений в защите растений методами генетической инженерии явилось создание трансгенных растений, устойчивых к вирусам, путем встройки в геном хозяина генов белков вирусной оболочки.

Устойчивость обычно ограничена только вирусом, ген оболочки которого трансформирован в донорное растение. Причем эта устойчивость может быть настолько специфической, что может проявляться только для мутантной формы вируса и не срабатывать для вируса дикого типа, если введен ген белка оболочки этого мутантного вируса.

Один из оригинальных методов защиты растений от вирусов с помощью трансгеноза предложен В. Шибальским еще в 1988 г. Его сущность заключается во введении в геном растений транс-действующих доминантных летальных генов или, по терминологии Шибальского, «антигенов»),   которые   кодируют   измененные   мутациями   белки вирусов, существенные для их воспроизводства, и путем конкурентного замещения соответствующих белков вируса дикого типа прерывают его размножение. С использованием такого подхода удалось получить очень высокую устойчивость растений к вирусу X картофеля (PVX). В этом случае в ген репликазы PVX с помощью направленного мутагенеза вводили мутации, сопровождающиеся заменой аминокислот в консервативном участке полипептидной цепи репликазы, ассоциированном с ее каталитическим сайтом. Для экспрессии мутантного трансгена в растениях табака были характерны внутриклеточное накопление инактивированной репликазы и появление высокой устойчивости растений к заражению вирусом PVX.

Со времени обнаружения в 1986 г. факта устойчивости растений табака к вирусу табачной мозаики при введении гена белка оболочки этого вируса, подобная устойчивость получена для большого количества вирусов различных таксономических групп. Уже проведены полевые испытания устойчивых к вирусам растений, полученных при использовании этих подходов.

При введении в растения риса гена, кодирующего белок оболочки вируса hoja Ыаnса, наносящего значительные потери урожая в странах тропической Америки, отмечено ослабление симптомов поражения, увеличение различных агрономических показателей. Трансгенные растения с самым высоким уровнем экспрессии трансгена имели только один или несколько листьев с симптомами вирусного поражения.

Один из коммерческих сортов картофеля (Бзура) был трансформирован конструкцией гена оболочки вируса курчавости листьев в смысловой и антисмысловой ориентации. В смысловой ориентации структурной части этого гена предшествовала лидерная последовательность короче, чем таковая у субгеномной РНК, образующейся у инфицированных клеток.

Антисмысловая конструкция включала последовательность, комплементарную первым 2020 нуклеотидам субгеномной РНК.

Трансгенные растения, экспреccирующие вирусную РНК, были устойчивы к вирусу при поражении тлями — переносчиками вируса. У одной линии с антисмысловой ориентацией гена инфекция отсутствовала даже при прививке растений на инфицированные подвои.

Получены трансгенные растения различных сортов гороха с геном белка оболочки вируса мозаики люцерны, вызывающим значительные потери урожая и снижение качества семян. Идентифицированы 3 линии трансгенных растений гороха, потомство которых было устойчивым при механической инокуляции этим вирусом.

Другой современный подход к получению трансгенных растений, устойчивых   к   вирусам,   основан   на   введении   в   них трансгенов, синтезирующих в клетках моноклональные антитела, направленные против вирусных белков. В одной из работ с использованием такого метода создали эффективную систему защиты растений от вируса морщинистой мозаики артишока.

Еще одним способом является введение генов, кодирующих РНК-зависимую РНК-полимеразу (репликазу). В ряде случаев эта устойчивость была достаточно высокой, чтобы полностью подавить накопление вирусов в инокулированных растениях.

Изучена возможность получения трансгенных растений, устойчивых к вирусам, за счет индукции у них белков общего ответа на инфекцию вирусами. В растения табака и люцерны интродуцирован ген интерферона человека. При инфицировании растений табака вирусом табачной мозаики и вирусом мозаики люцерны наблюдали задержку в развитии симптомов болезней у трансгенных растений.

Вероятно, наиболее рациональным типом генетически-инженерной устойчивости трансгенных растений к вирусам является трансформация, воздействующая на процесс репликации. Ингибируя процесс репликации, можно быть достаточно уверенным, что вирус не может накапливаться в количествах, достаточных для преодоления индуцированной устойчивости или мутировать в форму, способную преодолеть эту устойчивость.

Опубликованные данные показывают, что связанная с репликазой устойчивость может быть очень эффективной и действительно влиять на процесс репликации вирусов. Имеются сообщения, что эта устойчивость может распространяться на достаточно широкий спектр вирусов при использовании модифицированного гена репликазы.

Устойчивость к вирусам может быть индуцирована также внесением генов, кодирующих рибозимы, способные расщеплять РНК вирусов, в обычной или антисмысловой ориентации.

Активизация защитных систем организма и устойчивость к абиотическим факторам

Наряду с селекцией на устойчивость к болезням и вредителям, в странах Западной Европы и США ведется работа по повышению потенциальной урожайности видов растений, обладающих генетически детерминированной устойчивостью к засухе, кислым почвам, пониженным температурам и т.д. Именно благодаря этому стало возможным значительное увеличение площади сорго, овса, рапса, клюквы, черники и других экологически устойчивых культур. Так, в Италии, Франции и США все большую роль в зерновом балансе играет сорго, в Канаде культура рапса стала основным источником кормового белка, в Англии и Франции посевы овса включены в севообороты не только в качестве основной, но и промежуточной культуры, выполняющей фитосанитарную роль.

Известны примеры «формирующей» роли растений для агроэкологической, в том числе и биоценотической, среды. Так, сорта пшеницы и ячменя, выведенные на кислых почвах в западных районах США, лучше переносят ионную токсичность алюминия, чем созданные в штате Индиана, где такой эдафический стресс отсутствует. Селекция рапса на засухоустойчивость была более результативной при отборах в засушливых зонах.

Примечательно, что гибриды и сорта, дающие самый высокий урожай при повышенных дозах азота, у ряда культур оказываются и самыми высокоурожайными на почвах с низким уровнем его содержания.

Теоретически считается, что создать сорт, способный давать наибольшую урожайность во многих зонах, невозможно, но работы выдающихся селекционеров показали, что это не так. Наиболее известны сорта пшеницы Безостая 1, Мироновская 808 и др. В настоящее время, наряду с географически универсальными сортами, все большее значение приобретают агроэкологически и технологически специализированные, в плане их размещения и использования, сорта и гибриды.

«Агроэкологическая адресовка» сортов и гибридов — веление времени. Об этом свидетельствуют многочисленные данные о необходимости «избегания» действия абиотических и биотических стрессоров и, наоборот, важности «совпадения» периодов максимальной фотосинтетической производительности агроценозов с наиболее благоприятными для данной культуры и даже сорта условиями внешней среды, освещенности, температуры, влагообеспеченности и тд. Известно, например, что хотя позднеспелые сорта обычно превосходят по урожайности скороспелые, использование последних позволяет повысить урожайность зерновых и ряда других культур в неблагоприятных условиях внешней среды именно за счет «избегания» летней засухи и поражения растений некоторыми болезнями. Для многих почвенно-климатических зон России и Украины повышение скороспелости культивируемых видов растений оказывается решающим условием устойчивого роста величины и качества урожая.

В этом направлении ключевой проблемой является то, что для создания нового сорта традиционно требуется 10-15 лет, тогда как время его «жизни», особенно в связи с глобальными изменениями климата, измеряется 5-7 годами, на Западе — еще меньше. В результате этого, с учетом повышенных требований к сортам и гибридам, селекционная работа все в большей степени утрачивает индивидуальный характер и становится творчеством больших коллективов, объединяющих специалистов самых разных профессий. Другими словами, в настоящее время селекция растений требует все возрастающих затрат трудовых и материальных ресурсов.

В обеспечении защиты растений от заболеваний, вызываемых грибами, бактериями и вирусами, задействован ряд механизмов. Задачи ДНК-технологии в этом направлении состоят в том, чтобы активизировать у растений эти механизмы. Рассмотрим, какие это механизмы и каким образом достигается их активизация.

Усиление сигнальных систем, участвующих в формировании иммунного ответа. Иммунные реакции включаются у растений (как и у других организмов) только в ответ на попытку проникновения возбудителя. Усиление передачи сигнала о нападении является одним из способов активизации защитных свойств растений.

Проведены опыты по повышению устойчивости табака к фитофторе. Растениям был встроен ген, кодирующий бетакриптогеин (белок размером в 98 аминокислот) под конститутивным промотором вируса 35S мозаики цветной капусты. Трансгенные растения показали повышенную устойчивость к ряду рас данного гриба.

Усиление синтеза веществ, токсичных для патогенов. Один из механизмов защиты от патогенов у растений — синтез веществ, обладающих токсичностью для патогенов. Здесь имеются несколько путей: постоянный синтез веществ (когда они постоянно содержатся в тканях растения), гиперчувствительный ответ (синтез идет только при контакте с возбудителем). При этом токсичные вещества могут обладать разной избирательностью — обеспечивать защиту от одного конкретного инфицирующего агента или от ряда патогенов. Сейчас широко развернуты работы по усилению иммунитета растений путем активизации синтеза защитных веществ методами ДНК-технологий.

Так, в томаты было встроено два гена стилбенесинтетазы винограда, фермента, катализирующего синтез фитоалексина (ресвератрола), повышающего устойчивость к фитофторозу, под собственным промотором. Трансгенные растения показали повышенную на 65% устойчивость к фитофторозу по сравнению с контролем (Thomzik, et al. 1997).

Устойчивость к абиотическим факторам. Приспособленность к местным условиям — почве, климату, погоде, рельефу, т.е. абиотическим факторам — обычно входит в главные требования к сорту. Уровень техногенной обеспеченности, требования рынка и пр. позволяет наилучшим образом «уловить» для конкретного сорта рентабельные различия между почвой и климатом, месторасположением участка относительно рынка и уровнем агротехники, что проявляется в показателях величины и качества урожая, сроков его поступления, а следовательно, рентабельности и конкурентоспособности производства той или иной культуры. Отсюда очевидна первостепенная роль агроэкологически адресованных сортов, способных с наибольшей эфо>ективностью использовать благоприятные местные условия внешней среды и одновременно противостоять местным расам и штаммам болезней, наиболее вредоносным фитофагам, сорнякам и тд. Особенно велика роль местных сортов в формировании генофонда растений, обладающих горизонтальной устойчивостью к патогенам, которая практически всегда агроэкологически адресна, а ее поддержание требует создания специальных фонов отбора в первичном семеноводстве. К числу важнейших «рентообразующих» признаков следует отнести также способность сортов и гибридов обеспечивать устойчивость агроценозов за счет уменьшения негативного действия абиотических и биотических стресс-факторов. Так, скороспелые сорта и гибриды позволяют не только избежать действия летних засух и суховеев в южных районах Украины и России, но и существенно сократить техногенные и трудовые затраты на уборку. В северных регионах главное — сократить время на доработку урожая, где в общей структуре затрат издержки на сушку зерна и другой продукции достигают 20% и более.

Доходообразующие свойства культуры и сорта зависят от их «отзывчивости» на действие техногенных факторов (современных агротехнологий). Причем чем более благоприятны почвенно-климатические и погодные условия региона, тем выше указанная отзывчивость у большинства культур. Между тем, в неблагоприятных условиях внешней среды рост потенциальной продуктивности культивируемых видов растений определяется, в первую очередь, их конститутивной и приспособительной устойчивостью к действию абиотических и биотических стрессоров, а различия между разными видами растений по их отзывчивости на техногенные факторы, существенно возрастают. Это, в свою очередь, и определяет особенности не только агроэкологического макро-, мезо- и микрорайонирования культур, но и экономически, а также экологически оправданный уровень их техногенной и биологической интенсификации.

Следовательно, формирование агротехнологий, в том числе и их классификация на экстенсивные, нормальные, интенсивные и высокоинтенсивные, должны базироваться не на количестве применяемых удобрений и других химических средств, а на условиях обеспечения рентабельности и экологической безопасности, включая сохранение почвенного плодородия, при возделывании той или иной культуры в конкретном регионе, хозяйстве и даже поле. При этом важно учитывать, что для одной и той же территории набор культур (сортов) и уровень техногенной интенсивности соответствующих агротехнологий будут существенно различаться при бездотационном и дотируемом за счет государства производстве. В селекционной и агрономической практике необходимо судить об уровне «интенсивностио сорта, использования тех или иных техногенных факторов — минеральных удобрений, мелиорантов, орошения, пестицидов, биологически активных веществ, техники и пр. — с учетом как эффективности, так и биологической «интенсивности» сортов и агроценозов, характеризующей степень генетической детерминированности их потенциальной продуктивности, экологической устойчивости и средообразующих свойств.

Развиваются методы использования ДНК-технологий и для повышения устойчивости растений к неблагоприятным абиотическим факторам. Один из наиболее опасных абиотических факторов — заморозки. Физиологические процессы акклиматизации к ним у растений регулируются рядом генов, получивших название «cold-regulaled» (COR). Группой Томашова идентифицирован ген CBF1, который регулирует экспрессию многих COR-генов, являясь их «главным выключателем». Были созданы трансгенные растения арабидопсиса, у которых обеспечена гиперэкспрессия гена CBF1. Трансгенные растения оказались способными выдерживать резкое понижение температуры до -5 оС в течение двух дней, в то время как контрольные растения погибали.

Для растений также опасны высокие температуры: так, при +40 оС гибнет большинство хозяйственно ценных культур. Н. Мурата и соавторы трансформировали арабидопсис конструкцией, содержащей ген хлориноксидазы (фермента синтеза глицинбетанина, регулирующего осмотический баланс в клетке) из Arthrobacter globiformis. Глицинбетанин способствует акклиматизации растений при различных стрессах, а также защищает фотосинтетические ферменты от повреждений при высокой температуре. Трансгенные растения оказались способными к прорастанию при температуре 55 оС, в то время как контрольные — нет. Они также были более устойчивы к засолению и холоду. Kasuga et al. обнаружили кластер генов, участвующих в контроле ответа клеток на дегидрацию (Dehydration Response Element) в участке rd29A. Этот блок включает многие гены, индуцируемые засухой и холодом. Создана генно-инженерная конструкция из гена DREB1A под промотором rd29A. Растения, трансформированные данной конструкцией, были значительно более устойчивы к стрессовым воздействиям, чем контрольные.

До того, чтобы менять климат, человечество еще не дошло. Однако путем смены генотипа растений уже можно повысить их устойчивость к ряду неблагоприятных абиотических факторов.

В общем, можно заключить, что в неблагоприятных почвенно-климатических и погодных условиях решающим фактором реализации высокой потенциальной урожайности оказывается возможность самих культивируемых растений противостоять абиотическим и биотическим стрессам. Стремление к созданию сортов и гибридов, способных давать высокие и даже рекордные урожаи только в благоприятные по погодным условиям годы или в «оазисных» условиях государственной системы сортоиспытания, не оправдано ни в научном, ни, тем более, в экономическом плане. Подобная односторонняя ориентация существенно упрощает селекционный процесс, однако усиливает зависимость всего сельского хозяйства от капризов погоды, предопределяет беспрецедентно высокую вариабельность по годам валовых сборов и качества зерна, овощей, фруктов, снижает эффективность использования техногенных средств интенсификации растениеводства.

Справедливость такой оценки подтверждает, например, тот факт, что в условиях России в экстремальные по погодным условиям годы вымерзают миллионы гектар озимых, а потери зерна из-за полегания посевов и поражения засухой составляют около 15 млн. т. Очевидно, что в России, где большинство важнейших сельскохозяйственных культур достигают гидротермических границ их естественного произрастания, важнейшим условием устойчивого роста их урожайности и семеноводства оказывается уменьшение чувствительности посевов к действию температурного и водного стрессов за счет как подбора соответствующих культур, так и их селекции. Между тем наблюдается общая тенденция к «сползанию» сортов и гибридов кукурузы, подсолнечника, сахарной свеклы, томата и других культур в сторону позднеспелости, что также усиливает зависимость растениеводства от капризов погоды. Как известно, Вавилов (1931) неоднократно подчеркивал, что «в борьбе с засухой, в особенности с нашими суховеями и горячими ветрами, которые обычно проявляются в разгар лета, в июле, большое значение имеет подбор скороспелых сортов».

Поэтому большое значение приобретают исследования соле- и засухоустойчивости. Почему некоторые растения неплохо себя чувствуют в таких условиях, а другие погибают? Существуют специфические метаболические пути, которые открываются в клетках растений, находящихся на солнце, так что их метаболизм отличается от метаболизма в затененных клетках. Уже есть представления о механизмах передачи сигналов в процессах, контролирующих устойчивость к засухе, и факторах, влияющих на эту передачу. Сегодня уже ясно, что, регулируя концентрацию ионов натрия в вакуолях, можно получить засухоустойчивые растения.

Немало растений при засухе полностью прекращают жизнедеятельность, но после дождя или полива возрождаются. Многие домашние и садовые растения удается оживить после высыхания. Обычно это можно проделать только раз, но в природе есть растения, которые «оживают» многократно.

Существует и другой подход к достижению засухоустойчивости. Это могло бы быть использование растений типа сорго, адаптированных к засухе. К сожалению, их продуктивность невысока. Но рис и кукуруза немногим отличаются от сорго, так как произошли от общего предка. Располагая геномами риса, пшеницы и сорго, а также образцами сорго из банков семян, можно было бы изучить их метаболизм и получить засухоустойчивые и продуктивные культуры.

Кенийские ученые вывели 10 сортов чая, устойчивых ко всем природным катаклизмам: засухе, морозу, заболеваниям и вредителям. Они могут расти в любой экологической зоне. При помощи генной инженерии ученые «клонировали» морозоустойчивые сорта. Кроме того, у новинок низкое содержание кофеина и высокое — атоцинина, вещества, благотворно влияющего на организм людей, страдающих от тяжелых заболеваний, включая рак.

ГМ растения с заданным химическим составом и структурой молекул (аминокислоты, белки, углеводы)

Основной закон рационального питания диктует необходимость соответствия уровней поступления и расхода энергии. Уменьшение энерготрат современного человека ведет к снижению объема потребляемой пищи. Рацион современного человека, достаточный по калорийности, не в состоянии покрыть потребность организма в витаминах и ряда других веществ. Например, качество и полезность растительных жиров зависит от сравнительного содержания пальмитиновой, стеариновой, олеиновой, линолевой и линоленовой кислот. Жиры, богатые олеиновой кислотой, стабильны к окислению, имеют лучший запах и более полезны для здоровья, тогда как жиры, богатые ненасыщенными жирными кислотами (линолевой и линоленовой), имеют менее качественные органолептические характеристики и менее стабильны. Большинство растительных жиров имеют более 50% ненасыщенных жирных кислот. Поэтому в последние годы начаты работы по получению трансгенных масличных растений с измененным содержанием жирных кислот.

Трансгенные растения сои, несущие ген, кодирующий антисмысловую омега-3-десатуразу (катализирующую синтез линоленовой кислоты из линолевой), характеризовались пониженным содержанием линоленовой кислоты. Трансгенные соя и рапс с геном омега-6-десэтуразы имеют сниженное содержание линолевой и повышенное содержание олеиновой кислот. Один из лидеров этого направления — компания «Calgene». В 1995 г. эта компания получила разрешение в США на выращивание и коммерческое использование трансгенных растений рапса с измененным жирнокислотным составом. Проводятся также исследования по созданию трансгенных растений с заданным аминокислотным составом. Так, в настоящее время, клонированы гены запасных белков сои, горохэ, фасоли, кукурузы, картофеля.

Человек и млекопитающие требуют наличия 8 незаменимых аминокислот в рационе. Однако ни один из широко используемых в пищу белков семян не содержит сбалансированного набора всех этих аминокислот. Белки семян злаков дефицитны по лизину и триптофану, тогда как в белках бобовых — дефицит серосодержащих аминокислот метионина и цистеина. Методами генетической инженерии возможно введение кодонов, кодирующих дефицитные незаменимые аминокислоты, а также другие гены, модифицирующие содержание дефицитных аминокислот.

Регулируя биосинтез аминокислот, можно изменять их содержание в белках. В растения турецкого гороха был введен ген треониндеаминазы (TD). Анализ свободных аминокислот показал повышение в несколько раз содержания треонина, метионина и лизина.

Содержание лизина и метионина у сои и кукурузы повышали путем введения генов новых запасных белков или модификацией генов, контролирующих основные этапы биосинтеза запасных белков.

При трансформации рапса генетической конструкцией, содержащей антисмысловой ген круциферина, у полученных трансгенных растений наблюдали повышение содержания лизина, метионина и цистеина.

До 80% фосфора в зерне злаков находится в форме фитиновой кислоты (фитата), которая откладывается при развитии зерна в виде фитина. При прорастании фитат освобождается под действием энзима фитазы. Однако в сухих семенах, используемых при питании человека или при скармливании не жвачным животным, происходит незначительная деградация фитина.

Для улучшения питательной ценности зерна пшеницы, кодирующий фитазу ген (phyA) Aspergillus niger был перенесен в пшеницу при микробомбардировке незрелых зародышей. Для направления транспорта чужеродного протеина в полость эндоплазматического ретикулума к 5-концу гена phyA была пришита последовательность из 72 пар оснований, кодирующая сигнальную последовательность амилазы ячменя. Используя селекцию по bar гену, который находился под промотором убиквитина кукурузы, были получены трансгенные линии пшеницы.

Наиболее простой и очевидной стратегией в улучшении качества белка пшеницы и других злаков является увеличение числа генов, кодирующих высокомолекулярные субъединицы запасных белков. Это должно привести к увеличению пропорции высокомолекулярных субъединиц белка, что, в свою очередь, должно привести к увеличению эластичности хлеба. Это направление в настоящее время разрабатывается в нескольких лабораториях, имеющих подобные гены под контролем эндосперм-специфических промоторов.

Ведутся работы по изменению содержания углеводов. Первая работа по получению трансгенных растений с измененным содержанием углеводов была опубликована в 1992 г., когда в клубнях трансгенного картофеля было повышено содержание крахмала путем суперэкспрессии gig С гена Escherichia coli.

Фруктаны — полимеры фруктозы — являются низкокалорийными осластителями, которые имеют примерно такую же сладость, как и сахар, но не усваиваются человеком. Фруктаны стимулируют рост полезной микрофлоры кишечника. Они рекомендуются больным, страдающим инсулинозависимым диабетом и ожирением, и могут играть роль в снижении содержания холестерина в крови.

Некоторые фруктаны, такие как инулин, находят в тканях растений, например, цикория. Однако низкое содержание этих полимеров и сложности с выделением сильно снижают их коммерческое использование.

Получаемые промышленным способом в биореакторах из Aspergillus фруктаны имеют высокую стоимость.

Имеются сообщения о получении фруктан-синтезирующих трансгенных растениях табака и картофеля. Получены и трансгенные растения сахарной свеклы с геном 1-sst из артишока, кодирующим синтез 1-сахарозо-сахарозофруктозилтрансферазы — фермента, превращающего сахарозу в низкомолекулярные фруктаны. Ген был введен в протопласты замыкающих клеток устьиц. Запасающие корни полученных трансгенных растений имели высокое содержание низкомолекулярных фруктанов при общем содержании сахаров и сухом весе корней на уровне контрольных растений. Экспрессия 1-sst гена привела к превращению более 90% запасенных сахаров в фруктан.

Так как наличие фруктанов у растений коррелирует с холодо- и засухоустойчивостью, то можно предполагать усиление этих признаков у полученных трансгенных растений сахарной свеклы.

Инвертаза расщепляет сахарозу до моносахаров. Трансгенные растения томата с геном кислой инвертазы в антисмысловой ориентации имели повышенное содержание сахарозы и пониженное содержание гексоз. При этом плоды, накапливающие сахарозу, были примерно на 30% мельче контрольных.

Глюкоза и фруктоза — одни из основных продуктов метаболизма растений, регулирующие многие биологические процессы. Первым этапом в их метаболизме является фосфорилирование гексокиназами и фруктокиназами. Изучение трансгенных растений томата с измененной активностью фосфорилирования гексоз показало, что фосфорилирующие энзимы влияют на регуляторную функцию сахаров.

Изучается возможность получения трансгенных растений, синтезирующих антигельминтные протеины, для терапии инфицированных гельминтами животных.

В самое последнее время трансгенные растения рассматриваются в качестве альтернативы микробиологическому синтезу. Они, имея низкую себестоимость, могут использоваться в производстве больших количеств антител и других белков и полипептидов. Выход антител в трансгенных растениях составляет от 1 до 5% от общего содержания белка растений.

Было подсчитано, что стоимость 1 кг протеина при 1% содержании от общего белка будет составлять приблизительно 100 долл. По подсчетам фирмы Agracetus, если средняя стоимость очищенных пептидов, полученных с помощью современных методов, составляет 100 000-1 млн долл/кг, то их стоимость при получении из трансгенных растений составит 1000 долл/кг.

Безусловно, в настоящее время трудно сказать, какие антигены, какие «съедобные вакцины» и на основе каких растений будут получены и коммерциализованы в ближайшее время. Ясно только, что экономические выгоды от применения таких вакцин намного превысят расходы на их разработку и внедрение в промышленные условия.

Трансгеноз все более широко используется для получения различных соединений, имеющих самое разнообразное практическое применение.

Описано изменение аромата, наблюдаемое у трансгенных растений.

Известно, что несколько биотехнологических компаний работают над изменением окраски цветков трансгенных растений, в частности, над получением голубой розы. Первым примером изменения окраски цветков растений, очевидно, является эксперимент по введению гена, кодирующего дигидрофлавонолредуктазу в белоцветковое растение петунии, что привело к появлению кирпично-красной окраски.

Осуществлена генетическая трансформация торении (Torenia hybrida). Полученные трансгенные растения не содержали вовсе или имели сниженное количество антоцианов в лепестках цветков. Их окраска варьировала у разных трансгенных растении от синей до белой.

Трансформация другого сорта торении, содержащего в цветках антоцианы и каротиноиды, этими же генетическими конструкциями, привела к получению растений с бледно-желтой окраской.

В последнее время, наряду с переносом в растения таких «экзотических генов», разрабатываются уже целые программы по отдельным видам сельскохозяйственных растений, направленные на изменение сразу целого комплекса полезных признаков. Так, для сахарной свеклы такая программа ставит целью изменения морфологии корня путем введения генов, изменяющих уровень эндогенных фитогормонов, и прямые манипуляции с cdc (циклин-зависимые киназы) генами для получения высокоурожайной сахарной свеклы, с высоким содержанием сахарозы, незагрязненным клеточным соком и слабой зависимостью от условий выращивания.

ГМО для улучшения сохранности и качества плодов и овощей

Известно, что фермент полигалактуроназа приводит к размягчению плодов после их созревания. Первые попытки ингибировать процесс размягчения были связаны с внесением гена полигалактуроназы в антисмысловой ориентации. Однако эта стратегия не привела к значительному изменению процесса размягчения плодов.

Альтернативой внесению генов, ингибирующих синтез галактуроназы, является перенос генов, ингибирующих синтез этилена, который ускоряет созревание плодов и ряда овощей. Доминантный etr-1 ген, внесенный в растения Arabidopsis, приводил к нечувствительности к этилену.

Получены трансгенные томаты, экспреccирующие антисмысловую мРНК к 1-аминоциклопропан-1-карбоксилатсинтазе — ключевому энзиму биосинтеза этилена. В некоторых трансгенных линиях отмечено сильное угнетение синтеза этилена. Сорванные плоды трансгенных растений никогда не созревали. Они становились со временем желто-оранжевыми, но никогда не краснели, не размягчались и не становились ароматными. При обработке трансгенных плодов этиленом они становились неотличимыми от нормально созревших плодов по плотности, окраске и аромату.

Разрабатываются также методы создания бессемянных плодов, выполненные под руководством Анжело Спена. В нормальных растениях после оплодотворения наблюдается рост уровня содержания фитогормона ауксина, который стимулирует рост семян и формирование плода вокруг них. Спена с сотрудниками удалось создать трансгенные растения табака и баклажанов, способные продуцировать ауксин при неоплодотворенных семенах. Для этого создана конструкция, содержащая ген, изолированный из патогенной бактерии (Pseudomonas syringae), который кодировал участок 1ааМт стимулирующий синтез ауксина в тканях растений, и промоторный участок DefH9-reHa, изолированного из львиного зева и экспрессирующегося только в семяпочках. Генетическая модификация растений табака и баклажанов привела к образованию бессемянных плодов (Rotino et al., 1997).

Генетичесии модифицированный рис как одна из моделей решения проблем питания

Рис принадлежит к классу Monocotiledones, семейству Poaceae (Gramineae) — злаковых, трибе Oryzeae — рисовых. В классификации этой культуры выделяют от 19 до 32 видов. Многолетние и однолетние виды — диплоиды серии sativae. Многолетние виды серии latibofia — ди- и тетраплоиды. Единственный вид серии australiensis — O.australlensis, диплоид. В происхождении культурного риса получила признание гипотеза монофилетического происхождения. Полагают, что вид O.sativa произошел от многолетнего предшественника. Первичный центр происхождения O.sativa — районы Северо-Восточной Индии, севера Бангладеш и территории Бирмы, Таиланда, Лаоса и Вьетнама. В процессе одомашнивания в результате географической изоляции и адаптации к условиям среды произошла дифференциация O.sativa на группы сортов, которые выделены как географические расы (экорасы и подвиды): indica, japonica, javanika. Эти группы сортов в свою очередь подверглись дальнейшему разделению на экотипы, для них характерно также становление барьера стерильности. Дифференциация прошла по морфологическим, физиологическим и биохимическим признакам. О древности этого процесса и существовании, по-видимому, нескольких центров происхождения, свидетельствует генетическая структура некоторых рас O.sativa и сравнительно свободный обмен генами между культурными и дикими сородичами. Внутривидовая дифференциация подтверждена многими методами.

В отличие от O.sativa. вопрос о внутривидовой дифференциации O.glabenima полностью не решен. Предложены различные варианты подразделенности вида — от деления на «vulgaris» и «numilis» до затопляемого и суходольного, плавающего и прямостоячего.

У азиатской формы O.perennis дифференциация на уровне подвидов не описана. Кариотип у O.sativa 2n=24, его характеристика у всех видов рода Oryza  пока  отсутствует  из-за  небольших  размеров  хромосом. При исследовании O.sativa установлено, что подвид indica имеет четыре ядрышка и четыре ядрышковыехромосомы, подвид japonica — два ядрышка и две ядрышковые хромосомы.

Предполагается общий геном А у возделываемых видов риса и их ближайших сородичей, так как при скрещивании они дают гибриды с различной фертильностью. На основании скрещивания выделяют группу азиатских видов: sativa, saliva var spontanea (syn. O.nivara) и perennis (syn. O.rufipogan) и африканскую группу glaberrima breviligulata (syn. O.barthii), stapfii (syn. O.longistaminata). Внутри группы гибриды относительно фертильны, а между группами — стерильны.

Рис — самоопылитель, наибольшая изменчивость культурного риса характерна для O.sativa, у O.glaberrina разнообразие сортов не очень велико. При неблагоприятных условиях цветения возможны случаи перекрестного опыления, его частота выше для многолетних форм. Рис — основная возделываемая культура, по суммарному урожаю он опережает пшеницу. Для более чем половины населения Земли рис является основным продуктом питания. По энергетичности, легкой усвояемости и диетическим свойствам он превосходит многие крупы. Пищевые и кулинарные качества его определяются, в основном, наличием белка и амилаз. Содержание белка колеблется от 5,5 до 18% и контролируется многими генами, как и содержание крахмала.

Одной из проблем в ряде регионов мира является недостаток в продуктах питания железа в усваиваемых организмом формах. Особенно остро она стоит в районах Юго-Восточной Азии, где основным продуктом питания является рис. Рис играет большую роль в экономике большинства государств Азии. Его основные производители и потребители — Китай и Индия. На их долю приходится 56% мирового производства риса. С этим связано огромный интерес, проявляемый к рису со стороны многих стран, в том числе и Европы. Сейчас в мире создано всего несколько сортов генетически модифицированного риса, но зато каких... Например, «золотой рис», имеющий золотистый оттенок из-за повышенного содержания бета-каротина. Проходит стадию лабораторных апробаций ГМ рис с повышенным содержанием железа.

Работа по созданию риса, способного в увеличенном количестве накапливать железо, проведена японскими учеными. Ими был изолирован ген ферритина (белок, одна молекула которого накапливает до 4500 атомов железа) с повышенной активностью из проростков сои. Данный ген, поставленный под контроль промотора (регуляторный сегмент в гене, отвечающий за включение синтеза определенного продукта) запасного белка сои — глютенина, был встроен в геном риса. Испытания линий трансформированных растений показали, что накопление ферритина в их зерне в три раза выше, чем в зерне исходных линий. При этом не наблюдалось увеличения накопления железа в других органах трансформированных растений по сравнению с нетрансформированными (Gotoetal., 1999).

Если говорить широко, то основные проблемы недоедания, как известно, связаны не только с дефицитом железа, но и йода, витамина Д у большей части популяции Земли. Этот момент и стал отправной точкой создания «золотого риса». Это самая идеальная человечная работа, которую сделала наука в последнее время. Человечество долго говорило о том, что анемия, обусловленная дефицитом железа, является одним из самых распространенных и серьезных последствий нарушения питания.

Недоеданию подвергаются более двух миллиардов людей, преимущественно женщин и детей. Последствием недоедания беременных женщин являются миллионы смертельных случаев среди матерей и младенцев при родах, а также кровоизлияний и сепсисов в послеродовой период. У детей и подростков даже незначительное недоедание может вызвать нарушения умственного развития. Люди всех возрастов в условиях недоедания страдают ослаблением иммунной системы, ухудшением физического и умственного состояния, снижением работоспособности.

Большую опасность представляет недополучение с продуктами питания адекватного количества железа, что и является основной причиной железодефицитной анемии. По данным ЮНИСЕФ, в мире два миллиарда человек страдают от такой анемии, а количество людей, испытывающих дефицит железа, почти вдвое больше — 3,7 миллиарда человек, подавляющее большинство из которых — женщины. В странах Африки и Азии железодефицитная анемия является причиной 20 процентов смертей среди рожениц.

По причине недостаточности витамина А в мире ежегодно умирает один миллион детей. А еще 230 миллионов детей (по данным ВОЗ) живут под угрозой клинической или субклинической недостаточности витамина А — состояния, которое в большинстве случаев может быть предотвращено. Дефицит этого витамина делает детей особенно уязвимыми к любым инфекциям и осложняет протекание многих заболеваний, является также причиной слепоты среди детей, которая в развивающихся странах ежегодно поражает 500 тысяч детей. Обогащение пищи витамином А, по данным ЮНИСЕФ, на 23% снижает детскую смертность. Мы все это знали, но даже «зеленая революция», которая прошла во всем мире, не решила этой проблемы.

Известно, что каротиноиды, используемые организмом человека для получения витамина А, в зернах риса отсутствуют. Именно поэтому его недостаточность часто встречается там, где рис служит основной пищей.

Количество железа в организме зависит как от его наличия в продуктах питания, так и от способности к его усвоению и процессе пищеварения.

Лучше всего усваивается железо, содержащееся в мясе. Однако из-за дороговизны и труднодоступное мяса в бедных странах основным источником железа в пище человека являются овощи, а усвояемость этого железа гораздо ниже, чем железа, содержащегося в мясопродуктах. Более того, в растительной пище и в зерновых, включая рис, содержится фитиновая кислота, потенциальный ингибитор всасывания железа.

Аскорбиновая кислота, которой богаты фрукты и некоторые овощи, стимулирует абсорбцию железа растительного происхождения. Однако диета населения развивающихся стран обычно также очень бедна фруктами и полноценными овощами. Именно поэтому профилактика железодефицитной анемии и недостаточности витамина А до недавнего времени велась в трех направлениях: распространением пищевых добавок (прежде всего витамина А в капсулах), повышением качества пищевых продуктов (например, добавлением соединений железа в пшеничную муку) и путем повышения диетологической грамотности населения. Генные инженеры решили эту проблему, восполнив отсутствие ключевых компонентов в повседневных продуктах питания методами ДНК-технологии.

Как отмечал Инго Потрикус, один из авторов «золотого риса», эта разработка была создана для человека. Кроме того, «золотой рис» не был создан ни индустрией, ни в интересах индустрии. Его применение решает жизненно важную проблему путем совершенствования традиционного образа питания. Решение проблемы — долговременное, бесплатное, не требует дополнительных ресурсов, не имеет побочных эффектов, характерных для «зеленой революции». Индустрия не получает выгоды от его применения, выгоду получают социально незащищенные слои.

Местным фермерам технология предоставляется бесплатно и без ограничений, не создает их зависимости от большой индустрии, не дает преимуществ богатым землевладельцам. До сих пор не выявлено никакого существенного негативного воздействия на окружающую среду; не выявлено также никакого существенного риска для здоровья потребителей; традиционными методами получить такой сорт невозможно и тд.

Генетически модифицированная кукуруза

Кукуруза — однодомное, раздельнополое растение, относится к классу однодольных,   семейству   Роасеа,   трибе   Andropogoneae, подтрибе Trisacinae, род Zea. Включает следующие виды: Zea mays L. (2n=20) — кукуруза; Z.mexicana (2n=20) — однолетнее теосинте из Мексики и Западной Гватемалы; Z.luxurians (2n=20) — однолетнее теосинте из Южной Гватемалы, Гондураса и Юго-восточных районов Мексики; Z.diploperennls (2n=20) — многолетнее диплоидное теосинте из Мексики; Z.perennis (2n=20) — многолетнее тетраплоидное теосинте из Мексики (Дорофеев и др., 1988). Генетические и биохимические исследования показали, что теосинте — ближайший родственник кукурузы. Результаты гибридизации показали идентичность геномов этих видов, хотя выделены гены, уникальные для теосинте (двухрядный колос, одиночные колоски, выраженная реакция на продолжительность дня и тд.).

Кукуруза — одно из древнейших культурных растений. Америка является первичным и вторичным центром ее происхождения и одомашнивания, здесь наблюдается наибольшее разнообразие форм этой культуры и здесь она довольно широко распространена. Найденные археологами образцы примитивной кукурузы датируются приблизительно 6-м тысячелетием до н.э. В результате селекции эта культура имеет множество морфотипов, приспособленных к различным экологическим условиям от тропиков до высокогорных районов.

Кукуруза — наиболее продуктивная и распространенная культура. По площади возделывания в мире она стоит на третьем месте после пшеницы и риса, по валовому сбору зерна — на первом (в 2006 г. в мире было собрано 683 млн т кукурузы, 635 — риса и 615 — пшеницы — ред.).

В результате тысячелетий отбора возникли основные группы кукурузы, различающиеся консистенцией эндосперма зерновки. Они являются основой внутривидовой систематики и отражают основные направления отбора и этапы эволюционного становления различных форм. Единого мнения о такой классификации пока нет. Многие рассматривают эти формы как мутанты.

Выделяют следующие группы кукурузы: Z.mays everta — лопающаяся, Z.mays Indurata — кремнистая, Z.mays amylacea — крахмалистая, Z.m. indentata — зубовидная, Z.m. saccharata — сахарная, Z.m. ceratina — восковидная, Z.m. tunicata — пленчатая. Кукуруза — хороший модельный объект генетических исследований. Благодаря этому многие признаки хорошо изучены, выделены и синтезированы различные генотипы, в том числе доноры хозяйственно ценных признаков и свойств.

Это важнейшая культура, выращиваемая в большинстве стран. Она широко используется в рационах питания человека и кормах для животных. В кукурузе высоко содержание тиамина, необходимого для осуществления нормальной деятельности головного мозга и других функций организма. В этом плане с ней не сравнится ни один продукт растительного происхождения: 100 г кукурузы содержит до 150 мг этого витамина. Для выполнения своих функций тиамину необходим марганец, который также присутствует в кукурузе в высоких концентрациях. Эта культура богата витамином Н (биотин), который нужен для поддержания красоты волос и здоровья кожи. Немаловажное значение имеет достаточно высокое содержание в кукурузе железа, необходимого для кроветворения и дыхания клеток, магния, важного для нормального функционирования мышц и сердца. Широко известно, что чай из кукурузных рыльцев понижает кровяное давление и уровень сахара в крови, содержит эфирное масло, витамины С и К и другие биологически активные вещества.

В настоящее время создано более десятка сортов ГМ кукурузы с целью повышения ее урожайности. Большинство из них обладает устойчивостью к стеблевому мотыльку — насекомому, поедающему ее стебель. Создано также несколько сортов ГМ кукурузы, устойчивой к различным пестицидам.

В России 6 видов ГМ кукурузы прошли систему регистрации и разрешены для реализации населению и использования в пищевой промышленности. Однако мониторинг за оборотом пищевой продукции, полученной из кукурузы, показал, что ГМ кукуруза, ввозимая в страну для использования в пищевой промышленности, и продукты ее переработки составляют менее 1% от всей поступающей для этих целей из-за границы кукурузы. ГМ кукуруза, импортируемая в Россию, относится к сортам MON 810, устойчивому к стеблевому мотыльку, MON 863 — к жуку диабротика и NK 603 — к глифосату.

Дальнейшие разработки в области получения различных сортов ГМ кукурузы направлены на изменение структуры крахмала для улучшения технологических параметров этой культуры, модификации кукурузного масла, на повышение содержания лизина и триптофана в белках кукурузы.

Генетически модифицированный картофель

По количеству выращиваемого картофеля Россия сегодня занимает 1 место в Европе и второе в мире после Китая. Картофель — один из основных компонентов рациона россиян и украинцев. Он содержит в своем составе почти все минеральные вещества и микроэлементы — магний, кальций, фосфор, натрий и калий, находящиеся в идеальном соотношении. Высока концентрация витамина С в клубнях — 20 мг на 100 г продукта. Картофель содержит много клетчатки, участвующей в регулировании работы кишечника, а его высококачественный растительный белок в соединении с животными белками творога, яиц и сыра — лучшая замена мяса.

Тем обиднее, что при выращивании картофеля в России до 50% урожая теряется из-за колорадского жука. Это заставляет использовать различные ядохимикаты для борьбы с этим насекомым. Создание генетически модифицированных сортов картофеля значительно увеличило бы его урожайность и сохранность и уменьшило применение пестицидов при его возделывании.

В мире создано несколько сортов картофеля, устойчивого к колорадскому жуку, и два из них разрешены для реализации населению и использования в пищевой промышленности в России. Эти сорта картофеля, созданные фирмой «Монсанто», могут импортироваться только как пищевые продукты, но не в качестве семян для выращивания. В настоящее время в России ведутся интенсивные исследования с целью создания отечественных сортов ГМ картофеля, в том числе и устойчивого к колорадскому жуку.

Дальнейшее развитие в этой области связано с получением картофеля с улучшенной пищевой ценностью. Например, ведутся разработки по созданию картофеля с повышенным содержанием белка и повышенным содержанием лизина в нем.

Мониторинг за оборотом пищевой продукции, произведенной из картофеля, показал пока отсутствие генетически модифицированного картофеля на внутреннем рынке Российской Федерации.

Генетичесии модифицированные томаты

Первым генетически модифицированным пищевым продуктом, который поступил в продажу в 1994 году в США, был помидор под названием «ФЛАВР САВР», произведенный компанией «Кэлджин», а первым продуктом, полученным из ГМ томатов и появившимся в магазинах Великобритании, — томатное пюре, изготовленное из ГМ томатов фирмы «Зенека плант сайенс».

Помидоры обычно собирают незрелыми, а затем обрабатывают этиленом (природным газом, ускоряющим созревание), чтобы они приобрели красный цвет. В ГМ томатах с помощью двух разных генных технологий был замедлен синтез фермента, повреждающего стенки клеток помидоров, из-за чего они при хранении становятся мягкими. ГМ томаты могут дольше оставаться на стебле, что позволяет им набрать и аромат, и цвет и сохранить достаточную твердость.

Сейчас в мире разрешено для выращивания и реализации населению несколько сортов ГМ томатов, однако посевные площади, занятые ими, незначительны, в связи с чем и вероятность их попадания на внутренний рынок Российской Федерации практически равна нулю. Кроме того, ни один ГМ томат на сегодня не прошел систему регистрации в стране. Результаты мониторинга за оборотом пищевой продукции из помидоров также показывают отсутствие таких продуктов на внутреннем рынке России.

В настоящее время в мире ведутся интенсивные разработки для получения томатов с измененным химическим составом: с увеличенным содержанием ликопенов (биологически активных веществ, снижающих риск развития онкологических заболеваний); с увеличенным содержанием флавоноидов (биологически активных веществ, снижающих риск развития сердечно-сосудистых заболеваний).

Генетически модифицированная соя

Культурная соя (Glycine Мах) — однолетнее растение, происходящее из Восточной Азии, вероятно, из северного Китая. На протяжении веков эта культура являлась важным источником пищевых белков для Восточной Азии, но только недавно (в начале XX в.) появилась, в частности, в Америке. Сухие семена сои содержат около 40% белков и около 20% масла.

К настоящему времени 80% всего растительного масла, производимого в Америке, представлено соевым, множество пищевых продуктов имеют в своем составе соевые добавки.

Соя — преимущественный самоопылитель (99%), хотя пчелы и собирают нектар с ее цветов. Анализ генетической структуры по биохимическим маркерам свидетельствует о большой чистоте сортов данной культуры.

Дикая соя (предшественник культурной) — Glicine soya, G.ussuriensis — однолетнее вьющееся растение с небольшими, темно-коричневыми или черными семенами. Цветы имеют пурпурный венчик, их морфология соответствует цветам культурной сои. Дикая соя растет в Китае, Японии, Корее и Тайване. Glicine max и Glicine soya скрещиваются и дают плодовитое или частично плодовитое потомство. Имеющиеся в некоторых линиях G.soya одна хромосомная транслокация или одна либо более инверсий снижают плодовитость. У культурной, так же как и у дикой сои, одинаковое количество хромосом (2п=40). Предполагается, что дикая соя является предшественником культурной, а некоторые авторы относят их даже к одному виду.

Соя имеет длительную историю культивирования. Известно, что в Китае сою выращивали еще 4000 лет назад. Уже тогда продукты из соевых бобов использовали в лечебных целях, например, как эффективное средство при заболеваниях почек и отравлениях.

Соевый белок — уникальный белок растительного происхождения, содержащий все незаменимые аминокислоты, что позволяет в достаточной степени обеспечить потребности в них различных возрастных групп населения. По сравнению с мясом, рыбой и птицей соя как поставщик белка обладает неоспоримым преимуществом: ее аминокислоты легче выделяются из пищевой массы и лучше усваиваются. В Поднебесной сою называют «китайской коровой», поскольку из нее изготовляют отличную альтернативу молоку животных. Соевое молоко — полноценный и целебный источник белка, не содержащий насыщенных жиров.

Соевые продукты вносят большой вклад в профилактику заболеваний сердечно-сосудистой системы, которые значительно ухудшают качество жизни миллионов граждан, особенно в пожилом возрасте. Результаты клинических исследований, проведенных в разных странах мира, показали существенное снижение концентрации холестерина и других жиров в крови при использовании в рационе добавок из соевых белков или перехода на них как на основной источник белка.

Соя, аналогично синтетическим лекарственным средствам, снижает концентрацию холестерина и других жиров в крови. Однако в случае применения лекарственных средств могут наблюдаться побочные эффекты, которые не возникают при употреблении в пищу соевых белков. Снижение уровня холестерина в крови с помощью продуктов из соевых бобов связано с содержащимися в них изофлавонами.

Данные японских исследователей показали, что рацион, богатый соевыми белками, способствует также снижению артериального давления из-за содержания в них пептидов, обладающих гипотензивным действием.

Смеси из изолятов соевого белка активно используются в детском питании в качестве заменителей грудного молока, что является спасением для детей, обладающих аллергией на белки коровьего молока или непереносимостью лактозы. Кроме того, между соевыми смесями и молочными смесями, которые используются в качестве заменителей женского молока, есть важное различие. Состав жиров в соевой смеси полезнее, чем в молочной, — в ней много ненасыщенных жиров, она содержит и целебные жирные кислоты типа омега-3 и омега-6, благотворно влияющие на рост, физическое и умственное развитие детей.

В последние годы выяснилось, что изофлавоны сои могут играть важную роль и в профилактике заболеваний простаты. Хотя защитная роль изофлавонов требует дальнейшего научного обоснования, эпидемиологические исследования показывают гораздо меньшую распространенность этих заболеваний в странах, где соя — один из основных продуктов питания, например в Японии. В Корее эти заболевания встречаются в 30 раз реже, чем в странах с низким потреблением сои.

Клинические исследования, проведенные в последнее десятилетие, показали, что включение в рацион женщин 160 мг соевых изофлавонов существенно снижает климактерические симптомы, не вызывая при этом побочных эффектов, которые наблюдаются в случае применения синтетических эстрогенов и эстрогенов животного происхождения.

Продукты из соевых бобов содержат уникальный полноценный белок, целый ряд витаминов, особую роль среди которых играет витамин Е, защищающий клетки от губительного действия свободных радикалов, минеральные вещества: железо, имеющее большое значение для кроветворения, калий, играющий важную роль в регулировании работы сердца, а также биологически активные вещества, способствующие профилактике целого ряда заболеваний.

В последние годы соя нашла более широкое применение в питании детей и взрослых и в лечебно-профилактическом питании. В связи с этим возникла необходимость в увеличении производства продуктов из соевых бобов, и здесь важную роль сыграла генная инженерия. Среди созданных в мире генетически модифицированных культур соя занимает доминирующее положение. Цель ее генетических модификаций — значительно повысить урожайность этой важной продовольственной культуры. Созданы сорта сои, устойчивые к пестицидам и вредителям. По данным Министерства сельского хозяйства США, генетически модифицированная соя составляет более 80% от всей выращиваемой в этой стране и 55% от всей производимой сои в мире.

Как показывают результаты мониторинга за оборотом пищевой продукции, имеющей генетически модифицированные аналоги, проведенные Институтом питания РАМН, процент генетически модифицированной сои, представленной в России, колеблется от 20 до 40% в зависимости от региона. 99% генетически модифицированной сои на рынке составляет соя линии 40-3-2. Дальнейшие разработки в этой области связаны с созданием сои, обладающей улучшенной пищевой ценностью и вкусовыми качествами.

Усовершенствование качественных характеристик продукции растениеводства

В рамках данного направления ведутся работы по изменению генетического материала растений, направленные на уменьшение накопления вредных веществ, увеличение накопления полезных, и вообще на коренное изменение характеристик продукции, повышающее ее диетические, вкусовые и пищевые качества.

Примером работ по уменьшению накопления токсичных веществ могут служить попытки создания батата, который не накапливает цианогенных глюкозидов в корнях и листьях. Данная культура является важным продуктом питания 400 миллионов человек, главным образом в развивающихся странах. Однако накопление растениями батата цианогенных глюкозидов, таких, как линамарин и (в меньшем количестве) лотаустралин влияет на возникновение, по крайней мере, двух заболеваний.

В рамках этих работ сначала было проведено изучение путей образования цианогенных глюкозидов у сорго, идентифицирован ген (CPY79A1), участвующий в этом процессе, и найден аналог этого гена в базе данных арабидопсиса. На основании анализа последовательностей обоих генов были выделены консервативные участки (наименее отличающиеся для обоих генов). Путем ПЦР-амплификации этих консервативных участков у батата был выделен подобный ген, кодирующий, как оказалось, фермент, ответственный за синтез соединений, которые разлагают предшественники цианидов в батате. Было найдено два аллельных варианта данного гена и откартировано его положение в геноме. Данные используются при создании антисмысловых конструкций для блокировки этого гена, что должно предотвратить синтез цианогенных глюкозидов у батата.

Биотехнологи добились и других успехов. Им удалось получить особые помидоры. У них плоды краснее, круглее, тяжелее обычных, они имеют характерный запах и структуру, а плотность их такова, что они прыгают, как мячики. Точнее говоря, выведены два новых сорта помидоров. Один предназначен для использования при приготовлении первых блюд. Для плодов этого сорта характерна повышенная плотность. Они мясисты, потому что содержат мало жидкости. У второго сорта плоды темно-красные, круглые, как апельсины, их мякоть почти так же плотна, как у дыни. Плоды хорошо хранятся и переносят транспортировку.

Скорость, с которой биотехнология осваивает в сельском хозяйстве новые рубежи, потрясает.

Направления коммерческого использования генетически модифицированных организмов

В мире наблюдается глобальное падение эффективности возделывания зерновых (no Tilman et al., 2002). С 1960 г по 2000 глобальная продуктивность зерновых возросла примерно в 2,3 раза, в том числе и в расчете на 1 гектар. В то же время вклад в увеличение урожайности зерновых с 1960 по 2000 г увеличился: воды — в 2 раза, азотных удобрений — в 10 раз, фосфорных удобрении — в 7,5 раз, пестицидов — в 6 раз. Эффективность вклада азотных удобрений в получение урожая зерновых с 1960 г по 2000 г упала в 4 раза.

Для современного сельского хозяйства характерны экспоненциальный рост затрат невосполнимой энергии на каждую дополнительную единицу продукции (в том числе пищевую калорию), нарушение экологического равновесия в агроэкосистемах и агроландшафтах, все большая их генетическая однотипность и уязвимость, а также усиливающаяся зависимость от нерегулируемых факторов внешней среды и применения антропогенной энергии. Парадоксальность сложившейся в XXI столетии ситуации в сельском хозяйстве состоит в том, что отрасль, базирующаяся на использовании неограниченных и экологически безопасных ресурсах Солнца и биосферы, оказалась в числе наиболее ресурсо- и энергорасточительных и природоопасных. Так, если бы все страны расходовали на 1 га сельхозугодий такое же количество ископаемой энергии, как в США и Западной Европе, то 80% мировых энергоресурсов пришлось бы тратить только на сельское хозяйство. Односторонняя, преимущественно химико-техногенная интенсификация земледелия в промышленно развитых странах, как, впрочем, и стихийная экстенсификация агропромышленного комплекса в странах СНГ и Восточной Европы, не позволяют перейти к ресурсосберегающим и экологичным технологиям.

Наблюдается усиление зависимости вариабельности величины и качества урожая от нерегулируемых факторов внешней среды, доля которых по основным зерновым культурам превышает 60%.

Потенциальная урожайность сортов и гибридов реализуется лишь на 25-40% вследствие недостаточной, а зачастую и снижающейся устойчивости растений к действию абиотических и биотических стрессоров. Снижается экологическая устойчивость и качество урожая, а также средоулучшающих (почвозащитных, фитосанитарных и др.) и ресурсовосстанавпивающих свойств сортов и гибридов растений при достижении ими высокой потенциальной урожайности.

В глобальном масштабе наблюдается недостаточная приспособленность сортов и гибридов к конструированию высокопродуктивных, экологически устойчивых и эстетических агроэкосистем и агроландшафтов

Снижение производства зерновых на душу населения в глобальном масштабе, увеличение производства животноводческой продукции — результат истощения растениеводством почв агросистем.

Исходно разработка методов трансгеноза у сельскохозяйственных животных и растений обосновывалась необходимостью конструкции новых геномов, обеспечивающих более высокую продуктивность и устойчивость к неблагоприятным воздействиям. Существенные практические достижения в этом направлении получены у растений.

Ученые настроены чрезвычайно оптимистично. Вдохновенно обсуждают планы применения генной инженерии для получения чудо-растений. Однако далеко не все разделяют оптимизм исследователей. В США намерение биологов перейти в ближайшее время от лабораторных опытов к испытаниям в природных условиях все новых сортов ГМ растений вызывает активный протест защитников окружающей среды. Противники генной инженерии требуют запретить генетические манипуляции над растениями в природных условиях. Их путает возможность создания устойчивого к засухам, гербицидам и холоду вида растений, который, выйдя из-под контроля, начнет бурно размножаться и вытеснит всю дикорастущую флору.

В то же время, рекомбинантные ДНК-технологии продолжают осваивать все новые и новые сферы человеческой деятельности.

Так, например, ведутся работы по созданию биологического «антифриза». Убытки, связанные с заморозками, составляют в США более миллиарда долларов в год. И, как выяснилось, во многом тут виноваты бактерии. Именно они способствуют образованию губительных кристалликов льда. При отсутствии на поверхности листьев бактерий видов Pseudomonas syringae и Erwinia herbicola вода на растениях с падением температуры не замерзает, а становится переохлажденной. Растения при этом могут выдерживать температуру до -8 оС. Заморозки вредят растениям, только если на них образуется лед. А для начала кристаллизации сверхохлажденной воды нужны «ядра» или «центры» кристаллизации. Этими «ядрами» и служат бактерии упомянутых видов. На них-то и «нанизываются» образующиеся кристаллики льда.

Сначала американские ученые (Висконсинский университет) пытались бороться с бактериями, опрыскивая поле стрептомицином. Но ясно, что широкое использование этого средства неблагоприятно скажется на окружающей среде. Поэтому тактику борьбы пришлось поменять. Было решено натравить на бактерии убивающие их вирусы — бактериофаги.

Лабораторные эксперименты обнадежили. В течение нескольких часов удавалось уничтожить более 90% льдообразующих бактерий. Еще более иезуитский прием — генноинженерными методами так преобразовать бактерии, чтобы они более не вызывали кристаллизации льда. Для этого прежде всего следовало выяснить, что делает бактерии «ядрами» кристаллизации.

Ученые приготовили из ДНК P.syringae набор (библиотеку) фрагментов самой разной длины. Каждый из фрагментов был затем «вшит» в кишечную палочку, которая обычно не вызывает образования кристалликов льда, и один из фрагментов превратил Escherichia coli в ядро кристаллизации.

Затем — следующий этап этой работы — биоинженеры «вырезали» из ДНК бактерии кусок, «ответственный» за кристаллизацию. И такой ДНК (ее назвали «минус лед») заменили «нормальную» ДНК бактерии P.syringae. Распыление культуры полученных бактерий на опытных участках повышало морозостойкость растений, но применение этого метода пока экономически неэффективно. Кроме того, бактерии, вокруг которых образуются кристаллики льда, скорее всего, играют в природе заметную роль. При занесении их воздушными потоками в верхние слои атмосферы они способствуют образованию дождя и снега. Что произойдет, если исходные, «нативные» бактерии не выдержат «конкуренции» с модифицированными человеком микробами?

Генная инженерия и лекарственные препараты

Микробиологическое производство лекарственных средств

До появления технологии рекомбинантных ДНК многие лекарственные препараты на основе белков человека удавалось получать только в небольших количествах, их производство обходилось очень дорого, а механизм биологического действия иногда был недостаточно изучен. С помощью новой технологии получают весь спектр таких препаратов в количествах, достаточных как для их эффективного тестирования, так и для применения в клинике. На сегодняшний день клонировано более 400 генов (в основном в виде кДНК) различных белков человека, которые могут стать лекарственными препаратами. Большинство этих генов уже экспрессированы в клетках-хозяевах, и сейчас их продукты применяют для лечения различных заболеваний человека. Как обычно, сначала их проверяют на животных, а потом проводят тщательные клинические испытания. Ежегодный объем мирового рынка лекарственных препаратов на основе белков человека составляет около 150 млрд. долларов и постоянно растет. Объем мирового рынка лекарственных средств на основе рекомбинантных белков увеличивается на 12-14% в год и в 2000 г. составил примерно 20 млрд. долларов.

С другой стороны, перспективно применение в качестве терапевтических средств специфических антител. Их используют для нейтрализации токсинов,   борьбы   с   бактериями,   вирусами,  для   лечения раковых заболеваний. Антитело либо нейтрализует «нарушителя» — чужеродный агент, либо, разрушает специфическую клетку-мишень. Несмотря на многообещающие возможности, антитела пока редко применяют для профилактики и лечения болезней. И лишь с развитием технологии рекомбинантных ДНК и разработкой методов получения моноклональных антител и с расшифровкой молекулярной структуры и функции иммуноглобулинов снова возник коммерческий интерес к применению специфических антител для лечения различных заболеваний.

Разработка новых методов профилактики и лечения многих заболеваний человека внесла огромный вклад в рост благосостояния людей в XX в. Однако этот процесс нельзя считать завершенным. Так называемые «старые» заболевания, например, малярия, туберкулез и др., могут дать о себе знать вновь, как только будут ослаблены профилактические меры, или появятся резистентные штаммы. Типичная ситуация в этом отношении в Украине и России.

Первые продукты из ГМО — антибиотики

К антибиотикам относятся низкомолекулярные вещества, различающиеся по химической структуре. Общее для этих соединений то, что, являясь продуктами жизнедеятельности микроорганизмов, они в ничтожных концентрациях специфически нарушают рост других микроорганизмов.

Большинство антибиотиков относится к вторичным метаболитам. Их, как и токсины и алкалоиды, нельзя отнести к строго необходимым для обеспечения роста и развития микроорганизмов веществам. По этому признаку вторичные метаболиты отличаются от первичных, в присутствии которых наступает гибель микроорганизма.

Биосинтез антибиотиков, как и других вторичных метаболитов, как правило, происходит в клетках, прекративших рост (идиофаза). Биологическая роль их в обеспечении жизнедеятельности клеток-продуцентов остается до конца не исследованной. Специалисты, изучающие перспективы биотехнологии в области микробиологического производства антибиотиков, считают, что они в неблагоприятных условиях подавляют рост конкурирующих микроорганизмов, обеспечивая тем самым более благоприятные условия для выживания микроба-продуцента того или иного антибиотика. Значение процесса антибиотикообразования в жизнедеятельности микробной клетки подтверждается тем, что у стрептомицетов около 1% геномной ДНК приходится на долю генов, кодирующих ферменты биосинтеза антибиотиков, которые в течение продолжительного времени могут не экспрессироваться. Продуцентами известных антибиотиков в основном являются шесть родов нитчатых грибов, три рода актиномицетов (почти 4000 различных антибиотиков) и два рода истинных бактерий (примерно 500 антибиотиков). Из нитчатых грибов особое внимание следует обратить на плесневые грибы родов Cephalosporium и Penicillium, являющиеся продуцентами так называемых бета-лактамных антибиотиков — пенициллинов и цефалоспоринов. Большая часть актиномицетов, синтезирующих антибиотические вещества, включая тетрациклины, относится к роду Streptomyces.

Из известных 5000-6000 природных антибиотических веществ для реализации потребителям производится только около 1000. В то время, когда установили антибактериальное действие пенициллина и возможность его использования в качестве лекарственного препарата (Х.У. Флори, Э.Б. Чейн и др., 1941), продуктивность лабораторного штамма плесени — 2 мг препарата на 1 л культуральной жидкости — была явно недостаточной для промышленного производства антибиотика. Многократными систематическими воздействиями на исходный штамм Penicillium chrisogenum такими мутагенами, как рентгеновское и ультрафиолетовое облучение, азотистый иприт в сочетании со спонтанными мутациями и отбором наилучших продуцентов, удалось увеличить продуктивность гриба в 10 000 раз и довести концентрацию пенициллина в культуральной жидкости до 2%.

Путь повышения эффективности штаммов-продуцентов антибиотиков, основанный на беспорядочных мутациях и ставших классическим, несмотря на колоссальные затраты труда, используется до настоящего времени. Создавшееся положение является следствием того, что антибиотик, в отличие от белка, не является продуктом конкретного гена; биосинтез антибиотика происходит в результате совместного действия 10-30 разных ферментов, кодируемых соответствующим количеством разных генов. Кроме того, для многих антибиотиков, микробиологическое производство которых налажено, молекулярные механизмы их биосинтеза до сих пор не изучены. Полигенный механизм, лежащий в основе биосинтеза антибиотиков, является причиной того, что изменения отдельных генов не приводят к успеху. Автоматизация рутинных приемов анализа продуктивности мутантов позволяет изучить десятки тысяч функционирующих штаммов и тем самым ускоряет процедуру отбора при использовании классического генетического приема.

Новая биотехнология, основанная на использовании штаммов-суперпродуцентов антибиотиков, предполагает совершенствование механизмов защиты продуцента от синтезируемого им антибиотика.

Высокую продуктивность проявляют штаммы, устойчивые к действию высоких концентраций антибиотиков в культурной среде. Это свойство также учитывается при конструировании клеток-суперпродуцентов. Со времени открытия пенициллина в конце 1920-х годов из различных микроорганизмов были выделены более 6000 антибиотиков, обладающих разной специфичностью и разным механизмом действия. Их широкое применение для лечения инфекционных заболеваний помогло сохранить миллионы жизней. Подавляющее большинство основных антибиотиков было выделено из грамположительной почвенной бактерии Streptomyces, хотя их продуцируют также грибы и другие грамположительные и грамотрицательные бактерии. Ежегодно во всем мире производится 100 000 т антибиотиков на сумму примерно S млрд. долларов, в том числе более 100 млн. долларов приходится на долю антибиотиков, добавляемых в корм скоту в качестве добавок или ускорителей роста.

По оценкам, каждый год ученые обнаруживают от 100 до 200 новых антибиотиков, прежде всего в рамках обширных исследовательских программ по поиску среди тысяч различных микроорганизмов таких, которые синтезировали бы уникальные антибиотики. Получение и клинические испытания новых препаратов обходятся очень дорого, и в продажу поступают только те из них, которые имеют большую терапевтическую ценность и представляют экономический интерес. На их долю приходится 1-2% всех обнаруживаемых антибиотиков. Большой эффект здесь дает технология рекомбинантных ДНК. Во-первых, с ее помощью можно создавать новые антибиотики с уникальной структурой, оказывающие более мощное воздействие на определенные микроорганизмы и обладающие минимальными побочными эффектами. Во-вторых, генноинженерные подходы могут использоваться для увеличения выхода антибиотиков и соответственно для снижения стоимости их производства.

Можно считать, что клиническая биотехнология зародилась с началом промышленного производства пенициллина в 40-х гг. и его использования в терапии. По-видимому, применение этого первого природного пенициллина повлияло на снижение заболеваемости и смертности больше, чем какого-либо другого препарата, но, с другой стороны, поставило ряд новых проблем, которые удалось решить опять-таки с помощью биотехнологии.

Во-первых, успешное применение пенициллина вызвало большую потребность в этом лекарственном препарате, и для ее удовлетворения нужно было резко повысить выход пенициллина при его производстве. Во-вторых, первый пенициллин — С(бензилпенициллин) — действовал главным образом на грамположительные бактерии (например, Streptococci и Staphylococci), а нужно было получить антибиотики с более широким спектром действия и/или активностью, поражающие и грамотрицательные бактерии типа E.coli и Pseudomonas. В-третьих, поскольку антибиотики вызывали аллергические реакции (чаще всего незначительные, вроде сыпи на коже, но иногда и тяжелее, угрожающие жизни проявления анафилаксии), необходимо было иметь целый набор антибактериальных средств, с тем чтобы можно было выбрать из равноэффективных препаратов такой, который не вызывал бы у больного аллергию. В- четвертых, пенициллин нестабилен в кислой среде желудка, и его нельзя назначать для приема внутрь. Наконец, многие бактерии приобретают устойчивость к антибиотикам. Классический пример тому — образование стафилококками фермента пенициллиназы (правильнее, бета-лактамазы), который гидролизует амидную связь в бета-лактамном кольце пенициллина с образованием фармакологически неактивной пенициллоиновой кислоты. Увеличить выход пенициллина при его производстве удалось в основном благодаря последовательному использованию серии мутантов исходного штамма Penicillium chrysogenum, а также путем изменения условий выращивания.

Процесс биосинтеза одного антибиотика может состоять из десятков ферментативных реакций, так что клонирование всех генов его биосинтеза — задача не из легких. Один из подходов к выделению полного набора таких генов основан на трансформации одного или нескольких мутантных штаммов, не способных синтезировать данный антибиотик, банком клонов, созданным из хромосомной ДНК штамма дикого типа. После введения банка клонов в мутантные клетки проводят отбор транс формантов, способных синтезировать антибиотик. Затем выделяют плазмидную ДНК клона, содержащего функциональный экс премирующийся ген антибиотика (т.е. ген, восстанавливающий утраченную мутантным штаммом функцию), и используют ее в качестве зонда для скрининга другого банка клонов хромосомной ДНК штамма дикого типа, из которого отбирают клоны, содержащие нуклеотидные последовательности, которые перекрываются с последовательностью зонда. Таким образом идентифицируют, а затем клонируют элементы ДНК, примыкающие к комплементирующей последовательности, и воссоздают полный кластер генов биосинтеза антибиотика. Описанная процедура относится к случаю, когда эти гены сгруппированы в одном сайте хромосомной ДНК. Если же гены биосинтеза разбросаны в виде небольших кластеров по разным сайтам, то нужно иметь, по крайней мере, по одному мутанту на кластер, чтобы получить клоны ДНК, с помощью которых можно идентифицировать остальные гены кластеров.

С помощью генетических или биохимическихэкспериментов можно идентифицировать, а затем выделить один или несколько ключевых ферментов биосинтеза, определить их N-концевые аминокислотные последовательности и, исходя из этих данных, синтезировать олигонуклеотидные зонды. Этот подход использовался для выделения из Penicillium chrysogenum гена синтетазы изопенициллина N. Этот фермент катализирует окислительную конденсацию 5-(1_-а-аминоадипилН— цистеинил-Р-валина в изопенициллин N, ключевое промежуточное звено в биосинтезе пенициллинов, цефалоспоринов и цефамицинов.

Новые антибиотики с уникальными свойствами и специфичностью можно получить, проводя генно-инженерные манипуляции с генами, участвующими в биосинтезе уже известных антибиотиков. Один из первых экспериментов, в ходе которого был получен новый антибиотик, состоял в объединении в одном микроорганизме двух немного различающихся путей биосинтеза антибиотика.

Одна из плазмид Streptomyces, plJ2303, несущая фрагмент хромосомной ДНК S.coelicoior длиной 32,5 т.п.н., содержит все гены ферментов, ответственных за биосинтез из ацетата антибиотика актинородина, представителя семейства изохроманхиноновых антибиотиков. Целую плазмиду и различные субклоны, несущие части 32,5 т.п.н.-фрагмента (например, plJ2315), вводили либо в штамм АМ-7161 Streptomyces sp.T синтезирующий родственный антибиотик медермицин, либо в штамм В1140 или Tu22 S.violaceoruber, синтезирующие родственные антибиотики гранатицин и дигидрогранатицин.

Все указанные антибиотики являются кислотно-щелочными индикаторами, которые придают растущей культуре характерный цвет, зависящий от рН среды. В свою очередь рН (и цвет) среды зависят от того, какое соединение синтезируется. Мутанты родительского штамма S.coelicoior, не способные синтезировать актино родин, бесцветные. Появление окраски после трансформации штамма АМ-7161 Streptomyces sp. либо штаммов B1J40 или Tu22 S.violaceoruber плазмидой, несущей все или несколько генов, кодирующих ферменты биосинтеза актинородина, свидетельствует о синтезе нового антибиотика Трансформанты штамма АМ-7161 Streptomyces sp. и штамма-6 1140 S.violaceoruber, содержащие плазмиду рМ2303, синтезируют антибиотики, кодируемые и плазмидой, и хромосомной ДНК.

Однако при трансформации штамма Tu22 S.violaceoruber плазмидой plJ2303 наряду с актинородином синтезируется новый антибиотик — дигидрогранатиродин, а при трансформации штамма АМ-7161 Streptomyces sp. плазмидой plJ2315 синтезируется еще один новый антибиотик — медерродин А.

В структурном отношении эти новые антибиотики мало отличаются от актинородина, медермицина, гранатицина и гидрогранатицина и, вероятно, образуются в том случае, когда промежуточный продукт одного пути биосинтеза служит субстратом для фермента другого пути. Когда будут детально изучены биохимические свойства различных путей биосинтеза антибиотиков, появится возможность создавать новые уникальные высокоспецифичные антибиотики, манипулируя генами, которые кодируют соответствующие ферменты.

Разработка новых методов получения современных поликетидных антибиотиков.
Термин «поликетидные» относится к классу антибиотиков, которые образуются в результате последовательной ферментативной конденсации карбоновых кислот типа ацетата, пропионата и бутирата. Некоторые поликетидные антибиотики синтезируются растениями и грибами, но большая их часть образуется актиномицетами в виде вторичных метаболитов. Прежде чем проводить манипуляции с генами, кодирующими ферменты биосинтеза поликетидных антибиотиков, необходимо было выяснить механизм действия этих ферментов.

Детально изучив генетические и биохимические составляющие биосинтеза эритромицина в клетках Saccharopolyspora erythraea, удалось внести специфические изменения в гены, ассоциированные с биосинтезом этого антибиотика, и синтезировать производные эритромицина с другими свойствами. Вначале была определена первичная структура фрагмента ДНК S.erythraea длинен! 56 т.п.н., содержащего кластер генов егу, затем двумя разными способами модифицирована эритромицинполикетидсинтаза. Для этого 1) удаляли участок ДНК, кодирующий бета-кеторедуктазу, либо 2) вносили изменение в участок ДНК, кодирующий еноилредуктазу. Эти эксперименты позволили экспериментально показать, что если идентифицировать и охарактеризовать кластер генов, кодирующих ферменты биосинтеза определенного поликетидного антибиотика, то, внося в них специфические изменения, можно будет направленно изменять структуру антибиотика.

Кроме того, вырезая и соединяя те или иные участки ДНК, можно перемещать домены поликетидсинтазы и получать новые поликетидные антибиотики.

ДНК-технология в усовершенствование производства антибиотиков
С помощью генной инженерии можно не только создавать новые антибиотики, но и увеличивать эффективность синтеза уже известных. Лимитирующим фактором в промышленном производстве антибиотиков с помощью Streptomyces spp. часто является количество доступного клеткам кислорода. Вследствие плохой растворимости кислорода в воде и высокой плотности культуры Streptomyces его часто оказывается недостаточно, рост клеток замедляется, и выход антибиотика снижается. Чтобы решить эту проблему, можно, во-первых, изменить конструкцию биореакторов, в которых выращивается культура Streptomyces, а во-вторых, используя методы генной инженерии, создать штаммы Streptomyces, более эффективно использующие имеющийся кислород. Эти два подхода не исключают друг друга.

Одна из стратегий, используемых некоторыми аэробными микроорганизмами для выживания в условиях недостатка кислорода, состоит в синтезе гемоглобинподобного продукта, способного аккумулировать кислород и доставлять его в клетки. Например, аэробная бактерия Vitreoscilla sp. синтезирует гомодимерный гемсодержащий белок, функционально подобный эукариотическому гемоглобину. Ген «гемоглобина» Vitreoscilla был выделен, встроен в плазмидный вектор Streptomyces и введен в клетки этого микроорганизма. После его экспрессии на долю гемоглобина Vitreoscilla приходилось примерно 0,1% всех клеточных белков S.coelicoior даже в том случае, когда экспрессия осуществлялась под контролем собственного промотора гена гемоглобина Vitreoscilla, а не промотора Streptomyces. Трансформированные клетки S.coelicoior, растущие при низком содержании растворенного кислорода (примерно 5% от насыщающей концентрации), синтезировали в 10 раз больше актинородина на 1 г сухой клеточной массы и имели большую скорость роста, чем нетранс формированные. Этот подход можно использовать и для обеспечения кислородом других микроорганизмов, растущих в условиях недостатка кислорода.

Исходным материалом при химическом синтезе некоторых цефалоспоринов — антибиотиков, обладающих незначительным побочным эффектом и активных в отношении множества бактерий, — является 7-аминоцефалоспорановая кислота (7АСА), которая в свою очередь синтезируется из антибиотика цефалоспорина С. К сожалению, природных микроорганизмов, способных синтезировать 7АСА, до сих пор не выявлено.

Новый   путь   биосинтеза   7АСА   был   сконструирован включением специфических генов в плазмиду гриба Acremonium chrysogenum, который обычно синтезирует только цефалоспорин-С. Один из этих генов был представлен кДНК гриба Fusarium solani, кодирующей оксидазу D-аминокислот, а другой происходил из геномной ДНК Pseudomonas diminuta и кодировал цефалоспоринацилазу. В плазмиде гены находились под контролем промотора A.chrysogenum. На первом этапе нового биосинтетического пути цефалоспорин-С превращается в 7-р-(5-карбокси-5-оксопентанамид) цефалоспорановую кислоту (кето-АО-7АСА) при помощи оксидазы аминокислот. Часть этого продукта, вступая в реакцию с пероксидом водорода, одним из побочных продуктов, превращается в 7-бета-(4-карбоксибутанамид)-цефалоспорановую кислоту (GL-7ACA). И цефалоспорин-С, и кето-А0-7АСА, и GL-7ACA могут подвергаться гидролизу цефалоспоринацилазой с образованием 7АСА, однако только 5% цефалоспорина-С напрямую гидролизуется до 7АСА. Следовательно, для образования 7АСА с высоким выходом необходимы оба фермента.

Интерфероны

В конце 70-х — начале 80-х г.г. XX века ДНК-технология впервые стала привлекать к себе внимание общественности и крупных инвесторов. Одним из перспективных биотехнологических продуктов был интерферон, на который в то время возлагали надежды как на чудодейственное средство против множества вирусных заболеваний и рака. О выделении кДНК интерферона человека и его последующей экспрессии в Escherichia coll сообщали все заинтересованные издания мира.

Для выделения генов или белков человека используют разные подходы. Обычно выделяют нужный белок и определяют аминокислотную последовательность соответствующего участка молекулы. Исходя из этого, находят кодирующую его нуклеотидную последовательность, синтезируют соответствующий олигонуклеотид и используют его в качестве гибридизационного зонда для выделения нужного гена или кДНК из геномных или кДНК-библиотек. Другой подход состоит в выработке антител к очищенному белку и использовании их для скрининга библиотек, в которых происходит экспрессия определенных генов. Для белков человека, синтезируемых преимущественно в какой-то одной ткани, кДНК-библиотека, полученная на основе мРНК, выделенной из этой ткани, будет обогащена последовательностью ДНК-мишени. Например, основным белком, синтезируемым клетками островков Лангерганса поджелудочной железы, является инсулин, и 70% мРНК, выделенных из этих клеток, кодируют именно его.

Однако принцип обогащения кДНК неприменим для тех белков человека, количество которых очень мало или место синтеза которых неизвестно. В этом случае могут понадобиться другие экспериментальные подходы. Например, интерфероны (ИФ) человека, включающие альфа, бета- и гамма-интерфероны, — это природные белки, каждый из которых может найти свое терапевтическое применение. Первый ген интерферона был выделен в начале 80-х г.г. XX века. С тех пор было обнаружено несколько разных интерферонов. Полипептид, обладающий действием лейкоцитарного интерферона человека, синтезирован в E.coli.

Некоторые особенности интерферона сделали выделение его кДНК особенно сложным. Во-первых, несмотря на то что интерферон был очищен более чем в 80 ООО раз, его удавалось получать лишь в очень небольших количествах, т.к. в то время не была известна его точная молекулярная масса. Во-вторых, в отличие от многих других белков, интерферон не обладает легко идентифицируемой химической или биологической активностью: ее оценивали только по снижению цитопатического действия вируса животных на культуру клеток, а это сложный и длительный процесс. В-третьих, в отличие от инсулина, было неизвестно, есть ли клетки человека, способные вырабатывать интерферон в достаточно больших количествах, т.е. существует ли источник мРНК интерферона. Несмотря на все эти трудности, в конце концов была выделена и охарактеризована кДНК, кодирующая интерферон. При выделении их кДНК пришлось разработать специальный подход, позволяющий преодолеть трудности, связанные с недостаточным содержанием соответствующих мРНК и белков. Теперь такая процедура выделения ДНК обычна и стандартна и для интерферонов состоит в следующем.

1. Из лейкоцитов человека выделили мРНК и фракционировали ее по размерам; провели обратную транскрипцию и встроили в сайт Psti плазмиды pBR322.

2. Полученным продуктом трансформировали Escherichia соli. Образовавшиеся клонов подразделили на группы. Тестирование проводили на фуппе клонов, что позволило ускорить процесс их идентификации.

3. Каждую фуппу клонов гибридизовали с неочищенным препаратом ИФ-мРНК.

4. Из образовавшихся гибридов, содержащих клонированную ДНК и мРНК, выделили мРНК и провели ее трансляцию в бесклеточной системе синтеза белка.

5. Определили имтерфероикую противовирусную активность каждой смеси, полученной в результате трансляции. Группы, проявившие интерферонную активность, содержали клон с кДНК, гибридизовавшейся с ИФ-мРНК.

6. Позитивные группы разбили на подгруппы, содержащие по несколько клонов, и вновь провели тестирование. Разбиение на подгруппы повторяли до тех пор, пока не идентифицировали клон, содержащий полноразмерную ИФ-кДНК человека.

С тех пор было обнаружено несколько разных типов интерферонов. Были выделены гены нескольких интерферонов и показана их эффективность при лечении различных вирусных заболеваний, но, к сожалению, интерферон не стал панацеей.

Исходя из химических и биологических свойств интерферона, можно выделить три фуппы: ИФ-альфа, ИФ-бета и ИФ-гамма. ИФ-альфа и ИФ-бета синтезируются клетками, обработанными препаратами вирусов или вирусной РНК, а ИФ-гамма вырабатывается в ответ на действие веществ, стимулирующих рост клеток. ИФ-альфа кодируется семейством генов, включающим как минимум 15 неаллельных генов, в то время как ИФ-бета и ИФ-гамма кодируются одним геном каждый. Подтипы ИФ-альфа проявляют разную специфичность. Например, при проверке эффективности ИФ-эльфа-1 и ИФ-альфа-2 на обработанной вирусом линии клеток быка эти интерфероны проявляют сходную противовирусную активность, в случае же обработанных вирусом клеток человека ИФ-альфа-2 оказывается в семь раз активнее, чем ИФ-альфа-1. Если противовирусная активность проверяется на клетках мыши, то ИФ-альфа-2 оказывается в 30 раз менее эффективным, чем ИФ-альфа-1.

В связи с тем, что существует семейство интерферонов, было предпринято несколько попыток создать ИФ с комбинированными свойствами, используя тот факт, что разные члены семейства ИФ-альфа различаются по степени и специфичности своей противовирусной активности. Теоретически этого можно достичь, соединив части последовательностей генов разных ИФ-альфа. Это приведет к образованию гибридного белка с другими свойствами, чем у каждого из исходных белков. Сравнение последовательностей кДНК ИФ-альфа-1 и ИФ-альфа-2, показало, что они содержат одинаковые сайты рестрикции в позициях 60, 92 и 150. После расщепления обеих кДНК в этих сайтах и последующего лигирования фрагментов было получено несколько гибридных генов. Эти гены экспрессировали в E.coli, синтезированные белки очистили и исследовали их биологические функции. Проверка защитных свойств гибридных ИФ на культуре клеток млекопитающих показала, что некоторые из них проявляют большую активность, чем родительские молекулы. Кроме того, многие гибридные ИФ индуцировали образование 2'-5'-олигоизоаденилат-синтетазы в контрольных клетках. Этот фермент участвует в синтезе 2'-5'-связанных олигонуклеотидов, которые в свою очередь активируют латентную клеточную эндорибонуклеазу, расщепляющую вирусную мРНК. Другие гибридные ИФ проявляли большую, чем родительские молекулы, антипролиферативную активность в культурах различных раковых клеток человека.

Гормон роста

Стратегию конструирования новых белков путем замены функциональных доменов или с помощью направленного мутагенеза можно использовать для усиления или ослабления биологического свойства белка. Например, нативный гормон роста человека (ГРЧ) связывается в разных типах клеток как с рецептором гормона роста, так и с пролактиновым рецептором. Чтобы избежать нежелательных побочных эффектов в процессе лечения, нужно исключить присоединение ГРЧ к пролактиновому рецептору. Поскольку участок молекулы гормона роста, связывающийся с этим рецептором, по своей аминокислотной последовательности лишь частично совпадает с участком молекулы, который взаимодействует с пролактиновым рецептором, удалось избирательно снизить связывание гормона с последним. Для этого использовали сайт-специфический мутагенез, в результате которого произошли определенные изменения в боковых группах некоторых аминокислот (His-18, His-21 и Glu-174) — лигандов для ионов Zn2+, необходимых для высокоаффинного связывания ГРЧ с пролактиновым рецептором. Модифицированный гормон роста связывается только со «своим» рецептором. Полученные результаты представляют несомненный интерес, но смогут ли модифицированные ГРЧ найти применение в клинике, пока неясно.

Муковисцидоз

Наиболее частым летальным наследственным заболеванием среди европеоидов является муковисцидоз. В США выявлено 30 ООО случаев этого заболевания, в Канаде и странах Европы — 23 000. Пациенты с муковисцидозом часто страдают инфекционными заболеваниями, поражающими легкие. Лечение рецидивирующих инфекций антибиотиками в конце концов приводит к появлению резистентных штаммов патогенных бактерий. Бактерии и продукты их лизиса вызывают накопление в легких вязкой слизи, затрудняющей дыхание. Одним из компонентов слизи является высокомолекулярная ДНК, которая высвобождается из бактериальных клеток при лизисе. Ученые из биотехнологической компании Genentech (США) выделили и экспреccировали ген ДНКазы — фермента, который расщепляет высокомолекулярную ДНК на более короткие фрагменты. Очищенный фермент вводят в составе аэрозоля в легкие больных муковисцидозом, он расщепляет ДНК, вязкость слизи снижается, что облегчает дыхание. Хотя эти меры и не излечивают муковисцидоз, они облегчают состояние больного. Применение данного фермента было недавно одобрено Департаментом по контролю качества пищевых продуктов, медикаментов и косметических средств (США), и объем его продаж составил в 2000 г. примерно 100 млн. долларов.

Другой биотехнологический продукт, помогающий больным — альгинат-лиаза. Альгинат — это полисахарид, синтезируемый целым рядом морских водорослей, а также почвенными и морскими бактериями. Его мономерными единицами являются два сахарида — бета-D-маннуронат и альфа-1-гулуронат, относительное содержание и распределение которых и определяют свойства конкретного альгината. Так, остатки a-L-гулуроната образуют межцепочечные и внутрицепочечные сшивки путем связывания ионов кальция; остатки бета-D-маннуроната связывают ионы других металлов. Альгинат, содержащий такие сшивки, образует эластичный гель, вязкость которого прямо пропорциональна размеру полисахаридных молекул.

Выделение альгината слизистыми штаммами Pseudomonas aeruginosa существенно повышает вязкость слизи у больных муковисцидозом. Чтобы очистить дыхательные пути и облегчить состояние больных, в дополнение к обработке ДНКазой следует провести деполимеризацию альгината с помощью альгинат-лиазы.

Ген альгинат-лиазы был выделен из Flavobacterium sp., грамотрицательной почвенной бактерии, активно вырабатывающей этот фермент. На основе E.coli был создан банк клонов Flavobacterium и проведен скрининг тех из них, которые синтезируют альгинат-лиазу, путем высевания всех клонов на твердую среду, содержащую альгинат, с добавлением ионов кальция. В таких условиях весь альгинат, находящийся в среде, за исключением того, который окружает продуцирующие альгинат-лиазу колонии, образует сшивки и становится мутным. Гидролизованный альгинат теряет способность к формированию сшивок, поэтому среда вокруг синтезирующих альгинат-лиазу колоний остается прозрачной. Анализ клонированного фрагмента ДНК, присутствующего в одной из положительных колоний, показал наличие открытой рамки считывания, кодирующей полипептид молекулярной массой около 69 000. Более детальные биохимические и генетические исследования показали, что этот полипептид, по-видимому, является   предшественником   трех   альгинат-лиаз, вырабатываемых Flavobacterium sp. Сначала какой-то протеолитический фермент отрезает от него N-концевой пептид массой около 6000. Оставшийся белок молекулярной массой 63 000 способен деполимеризовать альгинат, вырабатываемый как бактериями, так и морскими водорослями. При его последующем разрезании образуется продукт молекулярной массой 23 000, деполимеризующий альгинат морских водорослей, и фермент молекулярной массой 40 000, разрушающий альгинат бактерий. Для получения больших количеств фермента молекулярной массой 40 000 кодирующую его ДНК амплифицировали методом полимеразной цепной реакции (ПЦР), а затем встраивали в выделенный из B.subrjlis плазмидный вектор, несущий ген, кодирующий сигнальный пептид а-амилазы B.subrjlis. Транскрипцию контролировали при помощи системы экспрессии гена пенициллиназы. При трансформации клеток B.subrjlis полученной плазмидой и высевании их на содержащую альгинат твердую среду с добавлением ионов кальция образовались колонии с большим ореолом. Когда такие колонии выращивали в жидкой среде, рекомбинантная альгинат-лиаза выделялась в культуральную среду. Последующие тесты показали, что этот фермент способен эффективно разжижать альгинаты, синтезируемые слизистыми штаммами P.aeruginosa, которые были выделены из легких больных муковисцидозом. Для того чтобы определить, целесообразно ли проводить клиническое тестирование рекомбинантной альгинат-лиазы, нужны дополнительные исследования.

Профилактика отторжения трансплантированных органов

В 1970-х гг. были пересмотрены взгляды на пассивную иммунизацию: ее стали считать профилактическим средством борьбы с отторжением трансплантированных органов. Предлагалось вводить пациентам специфические антитела, которые будут связываться с лимфоцитами определенного типа, уменьшая иммунный ответ, направленный против пересаженного органа.

Первыми веществами, рекомендованными Департаментом по контролю качества пищевых продуктов, медикаментов и косметических средств (США), для использования в качестве иммуносупрессоров при пересадке органов у человека, были моноклональные антитела мыши ОКТЗ. За отторжение органов отвечают так называемые Т-клетки — лимфоциты, дифференцирующиеся в тимусе. ОКТЗ связываются с рецептором, находящимся на поверхности любой Т-клетки, который называется CD3. Это предупреждает развитие полного иммунного ответа и отторжение трансплантированного   органа.    Подобная    иммуносупрессия весьма эффективна, хотя и оказывает некоторые побочные действия, например, вызывает лихорадку и приводит к появлению сыпи.

Были разработаны приемы по производству антител с помощью E.coli. Гибридомы, подобно большинству других клеточных культур животных, растут относительно медленно, не достигают высокой плотности и требуют сложных и дорогих сред. Получаемые таким образом моноклональные антитела очень дороги, что не позволяет широко использовать их в клинике.

Чтобы решить эту проблему, были предприняты попытки создания своего рода «биореакторов» на основе генетически модифицированных бактерий, растений и животных. В этих целях в геном хозяина вводили генные конструкции, способные кодировать отдельные участки антител. Для эффективной доставки и функционирования некоторых иммунотерапевтических средств зачастую достаточно одной антигенcвязывающей области антитела (Fab- или Fv-фрагмента), т.е. присутствие Fc-фрагмента антитела необязательно.

ГМ растения — продуценты фармакологических препаратов

Сегодня все реальнее выглядят перспективы сельскохозяйственной биотехнологии предоставить такие растения, которые будут использоваться как лекарства или вакцины. Трудно даже представить, какое значение это может иметь для бедных стран, где обычные фармацевтические средства все еще в диковинку, а традиционные программы вакцинации по линии ВОЗ оказываются слишком дорогими и трудно выполнимыми. Это направление исследований необходимо всемерно поддерживать, в том числе и через сотрудничество государственного и частного секторов экономики.

Среди генов, экспрессия которых в растениях считается экзотической, наиболее важными являются гены, кодирующие синтез полипептидов, имеющих медицинское значение. Очевидно, первым выполненным исследованием в этой области следует считать патент фирмы Calgene об экспрессии интерферона мыши в клетках растений. Позже был показан синтез иммуноглобулинов в листьях растений.

Кроме этого, возможно введение в геном растения гена, кодирующего оболочечный белок (белки) какого-либо вируса. Потребляя растение в пищу, люди постепенно приобретут иммунитет к этому вирусу. По сути это — создание растений-лекарств.

Трансгенные растения обладают рядом преимуществ по сравнению с культурой клеток микроорганизмов, животных и человека для производства рекомбинантных   белков.   Среди   преимуществ   трансгенных растений отметим основные: возможность широкомасштабного получения, дешевизна, легкость очистки, отсутствие примесей, имеющих аллергенное, иммунносупрессивное, канцерогенное, тератогенное и прочие воздействия на человека. Растения могут синтезировать, гликозилировать и собирать из субъединиц белки млекопитающих. При поедании сырых овощей и фруктов, несущих гены, кодирующие синтез белков-вакцин, происходит оральная иммунизация.

Одним из путей уменьшения риска утечки генов в окружающую среду, применяемый, в частности, при создании съедобных вакцин, состоит во введении чужеродных генов в хлоропласты, а не в ядерные хромосомы, как обычно. Считается, что этот способ позволит расширить область применения ГМ растений. Несмотря на то, что ввести нужные гены в хлоропласты гораздо труднее, этот способ имеет ряд преимуществ. Одно из них заключается в том, что чужеродная ДНК из хлоропластов не может попасть в пыльцу. Это полностью исключает возможность неконтролируемого переноса ГМ материала.

Использование ДНК-технологий для разработки вакцин

Перспективным направлением является создание трансгенных растений, несущих гены белков, характерных для бактерий и вирусов, вызывающих инфекционные заболевания. При потреблении сырых плодов и овощей, несущих такие гены, или их сублимированных соков происходит вакцинация организма. Например, при введении гена нетоксичной субъединицы энтеротоксина холеры в растения картофеля и скармливании сырых клубней подопытным мышам в их организме образовывались антитела к возбудителям холеры. Очевидно, что такие съедобные вакцины могут стать эффективным простым и недорогим методом защиты людей и обеспечения безопасности питания в целом.

Развитие в последние десятилетия ДНК-технологий совершило революцию и в деле разработки и производства новых вакцин. При помощи методов молекулярной биологии и генетической инженерии были идентифицированы антигенные детерминанты многих инфекционных агентов, клонированы гены, кодирующие соответствующие белки и, в ряде случаев, налажено производство вакцин на основе белковых субъединиц этих антигенов. Диарея, вызываемая инфекцией холерным вибрионом или энтеротоксигенной кишечной палочкой (Escherichia coli), является одной из опаснейших болезней с высоким процентом летальных исходов, особенно у детей. Общее количество заболеваний холерой на земном шаре превышает 5 миллионов случаев ежегодно, в результате чего умирает около 200 тысяч человек. Поэтому Всемирная организация здравоохранения (ВОЗ) уделяет внимание профилактике заболевания диарейными инфекциями, всячески стимулируя создание разнообразных вакцин против этих заболеваний. Вспышки заболевания холерой встречаются и в нашей стране, особенно в южных регионах.

Диарейные бактериальные заболевания также широко распространены и у сельскохозяйственных животных и птицы, в первую очередь у молодняка, что является причиной больших убытков в хозяйствах в результате потери веса и смертности поголовья.

Классическим примером рекомбинантной вакцины, полученной с помощью микроорганизмов, служит производство поверхностного антигена гепатита В. Вирусный ген HBsAg был встроен в дрожжевую плазмиду, в результате чего в дрожжах в больших количествах стал синтезироваться вирусный белок, который после очистки используется для инъекций в качестве эффективной вакцины против гепатита (Pelre et al., 1992).

Многие южные страны с высоким процентом заболевания гепатитом проводят всеобщую вакцинацию населения, включая детей, против этой болезни. К сожалению, стоимость такой вакцины относительно высока, что препятствует широкому распространению программ всеобщей вакцинации населения в странах с невысоким уровнем жизни. В связи с таким положением в начале 90-х годов ВОЗ выступила с инициативой создания новых технологий для производства недорогих вакцин против инфекционных болезней, доступных для всех стран мира.

Десять лет назад выдвинута концепция использования трансгенных растений для производства так называемых «съедобных» вакцин (edible vaccines). Действительно, если какой-либо съедобный орган растения будет синтезировать белок-антиген, обладающий сильными оральными иммуногенными свойствами, то при употреблении этих растений в пищу параллельно будет усваиваться и белок-антиген с выработкой соответствующих антител.

Получены растения табака, несущие ген, кодирующий антиген оболочки вируса гепатита В под растительным промотором. Наличие антигена в листьях трансгенных растений подтверждено иммуноферментным анализом. Показано сходство физико-химического строения и иммунологических свойств образующегося рекомбинантного антигена и антигена сыворотки человека.

Идентификация антител, продуцируемых в растениях, показала возможность сборки двух рекомбинантных генных продуктов в одну белковую молекулу, что невозможно в прокариотических клетках. Сборка антител происходила, когда обе цепи были синтезированы с сигнальной последовательностью. При этом, наряду с возможностью введения двух генов в одно растение, возможно также соединение индивидуальных полипептидных цепей, синтезируемых в разных трансгенных растениях, в полноценный белок при гибридизации этих двух растений. Возможно введение нескольких генов на одной плазмиде.

Трансгенные растения-продуценты аутоантигенов могут использоваться также при других аутоиммунных болезнях, таких как множественный склероз, ревматический артрит, инсулинозависимый диабет и даже отторжения при трансплантации органов. Инсулинозависимый диабет является аутоиммунным заболеванием, при котором продуцирующие инсулин клетки поджелудочной железы разрушаются собственными цитотоксичными Т-лимфоцитами. Оральное профилактическое потребление значительных количеств иммуногенных белков может привести к предохранению и значительной задержке появления симптомов аутоиммунных болезней. Однако оно возможно только при наличии значительного количества аутоантигенов. Белки инсулин и панкреатическая декарбоксилаза глютаминовой кислоты (GAD65) рассматриваются в качестве оральных вакцин для предотвращения инсулинозависимого диабета. Недавно канадские биотехнологи получили трансгенные растения картофеля, синтезирующие панкреатическую декарбоксилазу глютаминовой кислоты. При скармливании предрасположенным к диабету мышам отмечено как снижение встречаемости диабета, так и величины аутоиммунного ответа.

Приведенные выше результаты генноннженерных разработок убедительно свидетельствуют о возможности создания «съедобных» вакцин на основе трансгенных растений. Учитывая тот факт, что разработка вакцин для человека потребует гораздо больше времени и более тщательной проверки на безвредность для здоровья, следует ожидать, что первые съедобные вакцины будут разработаны для животных. Исследования на животных помогут раскрыть механизмы действия «съедобных» вакцин и только потом, после длительного изучения и всесторонней оценки, такие вакцины можно будет использовать в клинической практике. Тем не менее, работы в этом направлении активно продолжаются, а идея использования растений для производства вакцин уже запатентована в США, что свидетельствует о коммерческом интересе к этим разработкам.

Несмотря на столь обнадеживающие результаты, проблема создания коммерческих «съедобных» вакцин против диареи требует дальнейших исследований. В патогенезе энтеротоксической формы бактериальных и холерных   диарей   первичным   является   обеспечение возможности бактериям размножаться в тонком отделе кишечника. Этот процесс зависит от способности Escherichia coli к адгезии, что обусловлено наличием на поверхности бактериальных клеток специальных нитевидных образовании белковой природы — фимбрий. На стенках тонкого кишечника больных диареей обнаруживается значительно больше бактерий, чем в просвете того же участка кишечника, что связано с наличием у Escherichia coli фимбриальных адгезинов — белков, обеспечивающих связывание с рецепторами на поверхности кишечного эпителия.

Даже непатогенные штаммы Escherichia coll, которые содержали плазмиду, кодирующую синтез адгезина, были способны колонизировать кишечник и вызывать диарею, не вырабатывая при этом энтеротоксинов. В связи с этим вполне вероятно, что иммунности только против токсинов будет недостаточно для предотвращения патогенных эффектов, вызываемых холерным вибрионом или кишечной палочкой. Возможно, что для преодоления этих эффектов в добавление к антигенам энтеротоксинов необходимо будет экспрессировать нейтрализующие эпитопы структурных антигенов, таких как липополисахариды, белки внешней мембраны бактерий или адгезинов, ассоциированных с фимбриями этих бактерий, ответственных за связывание со слизистой оболочкой кишечника. Недавно один из таких адгезинов — FimH — был успешно использован для иммунизации мышей против бактериальной диареи.

Еще одна важная проблема, связанная с разработкой «съедобных» вакцин — уровень экспрессии гетерологичного антигена в растениях. Поскольку при пероральном введении вакцины требуются большие количества антигена, чем при парентеральном, количество синтезируемого в растениях антигена,которое сейчас составляет не более 0,3% от общего растворимого белка, должно быть увеличено. В то же время уровень экспрессии должен быть достаточно высоким для того, чтобы вызывать иммунный ответ, но быть меньше уровня, который вызывает толерантность к антигену, как это происходит с веществами, потребляемыми с обычной пищей. А так как иммунный ответ (иммуногенность против толерантности) может быть антиген-специфичным, то уровни экспрессии для каждого потенциального антигена надо будет подбирать индивидуально.

Как показывают эксперименты, уровень экспрессии гетерологичного антигена в растениях может быть увеличен путем использования тканеспецифичных промоторов и энхансеров, энхансеров транскрипции и трансляции, добавлением транспортирующих пептидов, а также путем изменения нуклеотидной последовательности соответствующих генов с использованием кодонов, предпочтительных для растений. Однако, вопрос о том, какие растения лучше использовать и в каком съедобном органе лучше экспрессировать антиген, требует дальнейших исследований, так как в различных растениях могут содержаться вещества, блокирующие или замедляющие иммунный ответ или просто токсичные для человека и животных, как, например, алкалоиды в клетках табака.

Азбука здоровья — здоровые продукты

Достижения научно-технического прогресса затронуло все сферы человеческой деятельности, начиная от производства и кончая повседневным бытом. Столетиями люди стремились освободиться от физических нагрузок, автоматизируя производство, создавая бытовую технику и т.д. И, в общем, освободились. В результате суточные энерготраты человека к концу XX века по сравнению с его началом снизились в 1,5-2 раза.

Здоровье человека определяется, в основном, наследственной предрасположенностью (генетикой) и питанием. Во все времена создание продовольственной базы было залогом и основой процветания любого государства. Поэтому любое государство заинтересовано в проектах профилактики и оздоровительных программах, улучшении структуры питания, повышении качества жизни, снижении заболеваемости и смертности. Именно питание тесно связывает нас с окружающей средой, а пища — это материал, из которого строится человеческий организм. Поэтому знание законов оптимального питания позволяют обеспечивать здоровье человека. Эти знания просты и заключаются в следующем: потребляйте столько энергии, сколько тратите. Энергетическая ценность (калорийность) суточного рациона должна соответствовать суточным энерготратам. Другое — максимальное разнообразие пищи, что обеспечит разнообразие химического состава питания физиологическим потребностям человека в пищевых веществах (около 600 наименований). Потребляемая пища должна содержать белки, жиры, углеводы, витамины, минеральные соли, воду, клетчатку, ферменты, вкусовые и экстрактивные вещества, минорные компоненты — биофлавоноиды, индолы, антоцианиды, изофлавоны и многие другие. В случае недостаточности хотя бы одного из этих компонентов возможны серьезные нарушения здоровья. И, чтобы этого не случилось, суточный рацион человека должен включать примерно 32 наименования различных пищевых продуктов.

Оптимальное соотношение поступающих в организм пищевых веществ способствует сохранению здоровья и долголетия. Но, к сожалению, для большинства населения Земли характерен дефицит следующих пищевых веществ: полноценных (животных) белков; полиненасыщенных жирных кислот; витаминов С, В, В2, Е, фолиевой кислоты, ретинола, бета-каротина и других; макро- и микроэлементов: Са, Fe, Zn, F, Se, I и других; пищевых волокон. И избыточное потребление таких животных жиров и легкоусвояемых углеводов.

Дефицит потребления белка для большинства населения составляет в среднем 20%, содержание большинства витаминов и микроэлементов на 15-55% меньше расчетных величин потребности в них, а пищевых волокон — на 30% ниже. Нарушение пищевого статуса неминуемо ведет к ухудшению здоровья и как следствие — к развитию заболеваний. Если принять все население Российской Федерации за 100%, здоровых окажется только 20%, людей в состоянии маладаптации (с пониженной адаптационной резистентностью) — 40%, а в состоянии предболезни и болезни — по 20% соответственно.

Среди наиболее распространенных алиментарно зависимых заболеваний можно выделить такие: атеросклероз; гипертоническая болезнь; гиперлипидемия; ожирение; сахарный диабет; остеопороз; подагра; некоторые злокачественные новообразования.

Динамика демографических показателей в Российской Федерации и в Украине за последние 10 лет также характеризуется исключительно негативными тенденциями. Смертность почти вдвое превышает рождаемость, продолжительность жизни значительно уступает не только развитым государствам...

В структуре причин смертности ведущее место занимают патологии сердечно-сосудистой системы и онкологические заболевания — болезни, риск возникновения которых, в числе прочих причин, зависит и от нарушений питания.

Следует учесть и дефицит пищевых продуктов в мире. За XX век численность населения Земли увеличилась с 1,5 до 6 млрд человек. Предполагается, что к 2020 году она вырастет до 8 млрд и более — в зависимости от того, кто и как считает. Ясно, что основной вопрос — вопрос питания такого числа людей. Несмотря на то, что производство сельскохозяйственной продукции за последние 40 лет благодаря селекции и усовершенствованию агрономических методов выросло в среднем в 2,5 раза, дальнейший его рост представляется маловероятным. А значит, темпы производства сельскохозяйственной пищевой продукции в дальнейшем будут все более отставать от темпов роста населения.

Современный человек в сутки потребляет около 800 г пищи и 2 л воды. Таким образом, всего лишь за сутки люди съедают более 4 млн тонн пищи. Уже сейчас дефицит пищевых продуктов в мире превышает 60 млн тонн, и прогнозы неутешительны...

Решение проблемы увеличения производства пищевых продуктов старыми методами уже невозможно. Кроме того, традиционные сельскохозяйственные технологии не возобновляемы: в течение последних 20 лет человечеством потеряно свыше 15% плодородного почвенного слоя, а большая часть пригодных к возделыванию почв уже вовлечена в сельскохозяйственное производство.

Анализ ситуации, сложившейся за последние годы в агропромышленном комплексе России, указывает на снижение проживающего населения и падение производства всех видов сельскохозяйственной продукции более чем в 1,5 раза. При сохранившихся общих объемах природных и трудовых ресурсов кризис вызвал резкое ухудшение использования пахотных земель, снижение продуктивности агроэкосистем, из оборота выведено более 30 млн га высокопродуктивных агроценозов.

Меры, принимавшиеся до сих пор для стабилизации положения на рынке сельскохозяйственной продукции, оказались неэффективными и недостаточными. И импорт продовольствия превысил все разумные пределы и поставил под вопрос продовольственную безопасность.

Исходя из значимости оптимизации структуры питания для здоровья нации, развития и безопасности страны, разработаны приоритетное направление для улучшения питания населения России: ликвидация дефицита полноценного белка; ликвидация дефицита микронутриентов; создание условий для оптимального физического и умственного развития детей; обеспечение безопасности отечественных и импортных пищевых продуктов; повышение уровня знаний населения в вопросах здорового питания. Научной основой современной стратегии производства пищи служит изыскание новых ресурсов, обеспечивающих оптимальное для организма человека соотношение химических компонентов пищи. Решение этой проблемы в первую очередь состоит в поиске новых источников белка и витаминов.

Например, растение, содержащее полноценный белок, который по набору аминокислот не уступает животным белкам, — соя. Введение в рацион продуктов из нее позволяет восполнить дефицит белка, а также различных минорных компонентов, в частности, изофлавонов.

Одно из решений продовольственной проблемы — химический синтез пищевых продуктов и их компонентов, причем определенные успехи уже достигнуты в области производства витаминных препаратов. Очень перспективен и уже применяется такой способ получения полноценных пищевых продуктов, как обогащение их белком и витаминами в процессе технологической обработки, то есть производство пищи с заданным химическим составом.

Другой путь — использование микроорганизмов в качестве отдельных компонентов пищевых продуктов, ведь скорость роста микроорганизмов в тысячу раз превышает скорость роста сельскохозяйственных животных и в 500 раз — растений.

Важно то, что имеется возможность направленного генетического предопределения у микроорганизмов их химического состава, его совершенствования, что непосредственно определяет их пищевую ценность и перспективу применения.

Таким образом, в наступившем столетии производство пищевыхпродуктов не сможет обойтись без применения высоких современных технологий и, в частности, без использования биотехнологий, использования микроорганизмов для получения пищевых продуктов

С ростом понимания важности здорового образа жизни увеличился спрос на продукты питания, не содержащие вредных веществ. И здесь ДНК-технологи не смогли не поучаствовать.

Выше мы уже упоминали сахарную свеклу, продуцирующую фруктан — низкокалорийный заменитель сахарозы. Получить такой результат удалось путем встройки в геном свеклы гена из иерусалимского артишока, который кодирует фермент, превращающий сахарозу в фруктан. Таким образом, 90% накопленной сахарозы у трансгенных растений свеклы превращается в фруктан.

Еще одним примером работ по созданию продуктов «функционального питания» может служить попытка создания безкофеинного кофе. Группой ученых на Гавайях был выделен ген фермента ксантозин-N7-метилтрансферазы, который катализирует критический первый шаг синтеза кофеина в листьях и зернах кофе. С помощью агробактерии в клетки культуры тканей кофе Арабика была встроена антисмысловая версия данного гена. Исследования трансформированных клеток показали, что уровень кофеина в них составляет всего 2% от нормального. Если работы по регенерации и размножению трансформированных растений пройдут успешно, то их использование позволит избежать процесса химической декофеинизации кофе, что позволит не только сэкономить по $2.00 на килограмме кофе (стоимость процесса), но и сохранить вкус испорченного таким образом напитка, который частично утрачивается при декофеинезации.

Развивающиеся страны, в которых голодают сотни миллионов людей, особенно нуждаются в повышении качества пищи. Например, в бобовых растениях, выращиваемых повсеместно, не хватает некоторых серосодержащих аминокислот, в том числе метионина. Сейчас предпринимаются активные попытки повысить концентрацию метионина в бобовых растениях. В ГМ растениях удается на 25% увеличить содержание запасного белка (это сделано пока для некоторых сортов фасоли). Другой, уже упоминавшийся пример — обогащенный бета-каротином «золотой рис», полученный профессором Потрикусом из Технического университета в Цюрихе. Получение промышленного сорта будет выдающимся достижением. Предпринимаются также попытки обогатить рис витамином В, недостаток которого ведет к малокровию и другим заболеваниям.

Работа по повышению качественных характеристик растениеводческой продукции хорошо иллюстрирует возможности современных ДНК-технологий в решении самых разнообразных задач.

Пища как лекарство

Термином «биотехнология» обозначают совокупность промышленных методов, использующих для производства живые организмы и биологические процессы. Биотехнологические приемы стары как мир — виноделие, хлебопечение, пивоварение, сыроварение основаны на использовании микроорганизмов и тоже относятся к биотехнологиям.

Современная биотехнология базируется на клеточной и генетической инженерии, что дает возможность получать ценные биологически активные вещества — антибиотики, гормоны, ферменты, иммуномодуляторы, синтетические вакцины, аминокислоты, а также пищевые белки, создавать новые сорта растений и породы животных. Основное преимущество применения новых подходов — уменьшение зависимости производства от природных ресурсов, использование экологически и экономически наиболее выгодных способов ведения хозяйства.

Создание генетически модифицированных растений позволяет многократно ускорять процесс селекции культурных сортов, а также получать культуры с такими свойствами, которые не могут быть выведены с использованием традиционных методов. Генетическая модификация сельскохозяйственных культур придает им устойчивость к пестицидам, вредителям, болезням, обеспечивая снижение потерь при выращивании, хранении и улучшении качества продукции.

Что характерно для второго поколения трансгенных культур, производящихся уже сейчас в промышленных объемах? Они обладают более высокими агротехническими характеристиками, то есть большей устойчивостью к вредителям и сорнякам, а следовательно, и более высокой урожайностью.

С точки зрения медицины немаловажные преимущества трансгенных продуктов состоят в том, что удалось, во-первых, значительно снизить остаточное количество пестицидов, благодаря чему появилась реальная возможность уменьшить химическую нагрузку на организм человека в условиях неблагоприятной экологической обстановки. Во-вторых, придать инсектицидные свойства растениям, что ведет к уменьшению их поражения насекомыми, а это многократно снижает пораженность зерновых культур плесневыми грибами. Известно, что они продуцируют микотоксины (в частности, фумонизины — природные контаминанты злаковых культур), токсичные для человека.

Таким образом, ГМ продукты как первого поколения, так и второго оказывают положительное влияние на здоровье людей не только опосредованно — через улучшение состояния окружающей среды, но и прямо — через снижение остаточного количества пестицидов и содержания микотоксинов. Неудивительно, что площади, занятые трансгенными культурами, год от года увеличиваются.

Но сейчас наибольшее внимание будет обращено на создание продуктов третьего поколения, с улучшенной или измененной пищевой ценностью, устойчивых к воздействию климатических факторов, засолению почв, а также имеющих пролонгированный срок хранения и улучшенные вкусовые свойства, характеризующихся отсутствием аллергенов.

Для культур четвертого поколения помимо вышеперечисленных качеств будут характерны изменение архитектуры растений (например, низкорослость), изменение времени цветения и плодоношения, что даст возможность выращивать тропические фрукты в условиях средней полосы, изменение размера, формы и количества плодов, повышение эффективности фотосинтеза, продуцирование пищевых веществ с повышенным уровнем ассимиляции, то есть лучше усваивающихся организмом.

Совершенствование методов генетической модификации, а также углубление знаний о функциях пищи и об обмене веществ в организме человека дадут возможность производить продукты, предназначенные не только для обеспечения полноценного питания, но и для дополнительного укрепления здоровья и профилактики заболеваний.

Растения-биореакторы

Одним из перспективных направлений ДНК-технологий растений является создание растений-биореакторов, способных продуцировать белки, необходимые в медицине, фармакологии и др. К достоинствам растений-биореакторов относится отсутствие необходимости в кормлении и содержании, относительная простота создания и размножения, высокая продуктивность. Кроме того, чужеродные белки не вызывают иммунных реакций у растений, чего трудно добиться у животных.

Существует потребность в получении целого набора биологически активных белков, которые, из-за очень низкого уровня синтеза в специфических тканях или продуктах, недоступны для изучения по механизму действия, широкого использования или определения областей дополнительного применения. К таким белкам относится, например, лактоферрин, который находится в небольшом количестве в молоке млекопитающих, лейкоцитах крови.

Лактоферрин человека (hLF) перспективно использовать в качестве пищевой добавки и лечебного препарата для профилактики и лечения инфекционных заболеваний желудочно-кишечного тракта детей раннего возраста, повышения иммунного ответа организма при злокачественных и ряде вирусных (СПИД) заболеваний. Получение лактоферрина из молока крупного рогатого скота, вследствие его низкого содержания, приводит к высокой стоимости препарата. При введении кДНК гена лактоферрина в клетки табака получен ряд каллусных тканей, синтезирующих укороченный лактоферрин, антибактериальные свойства которого были значительно сильнее антибактериальных свойств нативного лактоферрина. Концентрация этого укороченного лактоферрина в клетках табака составляла 0,6-2,5%.

В геном растений встраиваются гены, продукты которых индуцируют у человека и животных иммунный ответ, например, на оболочечные белки возбудителей различных заболеваний, в частности, холеры, гепатита, диареи, а также на антигены плазматических мембран некоторых опухолей.

Создаются трансгенные растения, несущие гены, продуцирующие некоторые гормоны, необходимые для гормонотерапии людей и так далее.

Примером использования растений для создания вакцин являются работы, выполненные в Стенфордском университете. В работе были получены антитела к одной из форм рака с помощью модернизированного вируса табачной мозаики, в который был встроен гипервариабельный участок иммуноглобулина лимфомы. Растения, зараженные модернизированным вирусом, продуцировали антитела правильной конформации в достаточном для клинического применения количестве. 80% мышей, получавших антитела, пережили лимфому, в то время как все мыши, не получавшие вакцины, погибли. Предложенный метод позволяет быстро получать специфичные для пациента антитела в достаточном для клинического применения количестве.

Велики перспективы использования растений для производства антител. Кевин Узил с сотрудниками показал, что антитела, продуцируемые соей, эффективно защищали мышей от инфекции вирусом герпеса. В сравнении с антителами, продуцируемыми в культурах клеток млекопитающих, антитела, продуцируемые растениями, имели сходные физические свойства, оставались стабильными в человеческих клетках и не имели отличий в способности связывать и нейтрализовать вирус. Клинические испытания показали, что использование антител, продуцируемых табаком, эффективно препятствовало размножению мутантных стрептококков, вызывающих кариес.

Было проведено создание вакцины, продуцируемой картофелем, против инсулинозависимого диабета. В клубнях картофеля накапливался химерный белок, состоящий из субъединицы В токсина холеры и проинсулина. Наличие субъединицы В облегчает потребление данного продукта клетками, что делает вакцину в 100 раз более эффективной. Скармливание клубней с микрограммовыми количествами инсулина мышам, больным диабетом, позволяло затормозить прогрессирование болезни.

Генные технологии в борьбе с загрязнением окружающей среды. Фиторемедиация

Своими действиями человек вмешался в ход эволюционного развития жизни на Земле и разрушил независимое от человека существование биосферы. Но он не сумел отменить управляющие биосферой фундаментальные законы и освободиться от их влияния.

Возрождаясь после очередного катаклизма из сохранившихся очагов, приспосабливаясь и эволюционируя, жизнь, тем не менее, во все времена имела основное направление развития. Оно определялось законом исторического развития Рулье, согласно которому в рамках прогресса жизни и необратимости эволюции все стремится к независимости от условий среды. В историческом процессе такое стремление реализуется путем усложнения организации, выражающейся в нарастании дифференциации структуры и функций. Таким образом, на каждом очередном витке спирали эволюции появляются организмы с усложняющейся нервной системой и ее центром — головным мозгом. Ученые-эволюционисты XIX в. назвали это направление эволюции «цефализацией» (от греческого «цефалон» — мозг) Однако цефализация приматов и усложнение их организма в конечном итоге поставили человечество как биологический вид на грань исчезновения согласно биологическому правилу ускорения эволюции, по которому усложнение биологической системы означает сокращение средней продолжительности существования вида и возрастание темпов его эволюции. Например, средняя продолжительность существования вида птиц составляет 2 млн. лет, млекопитающих — 800 тыс. лет, предковых форм человека — 200-500 тыс. лет. Современный подвид человека существует, по некоторым представлениям, всего от 50 до 100 тыс. лет, но многие ученые считают, что его генетические возможности и резервы исчерпаны (Длексеенко, Кейсевич, 1997).

На путь, усиливающий конфронтацию с биосферой и ведущий к катастрофе, предки современного человека ступили примерно 1.5-3 млн. лет тому назад, когда впервые начали пользоваться огнем. С этого момента пути человека и биосферы разошлись, началось их противостояние, итогом которого может явиться коллапс биосферы или исчезновение человека как вида.

Отказаться от чего-либо из достижений цивилизации, даже если они гибельны, человечество не может: в отличие от животных, использующих лишь возобновляемые источники энергии, причем в количествах, адекватных способности биосферы к самовоспроизведению биомассы, человечество может существовать, используя не столько возобновляемые, сколько не возобновляемые энергоносители и источники энергии. Новые изобретения в данной области только усиливают это противостояние.

Одним из новейших направлений использования трансгенных растений является их применение для фиторемедиации — очистки почв, фунтовых вод и т.п. — от загрязнителей: тяжелых металлов, радионуклидов и других вредных соединений.

Загрязнение окружающей среды природными веществами (нефтью, тяжелыми металлами и т.д.) и синтетическими соединениями (ксенобиотиками), часто токсичными для всего живого, год от года усиливается. Как предотвратить дальнейшее зафязнение биосферы и ликвидировать его существующие очаги? Один из выходов — использование генных технологий. Например, живые организмы, прежде всего микроорганизмы. Этот подход получил название «биоремедиация» — биотехнология, направленная на защиту окружающей среды. В отличие от промышленных биотехнологий, главная цель которых — получить полезные метаболиты микроорганизмов, борьба с загрязнениями неизбежно связана с   «выпуском»   микроорганизмов в окружающую  среду,  что требует углубленного понимания их взаимодействия с нею. Микроорганизмы производят биодеградацию — разрушение опасных соединений, не являющихся для большинства из них обычным субстратом. Биохимические пути деградации сложных органических соединений могут быть весьма протяженными (например, нафталин и его производные разрушаются под действием дюжины разных ферментов).

Деградацию органических соединений у бактерий чаще всего контролируют плазмиды. Их называют плазмидами деградации, или D-плазмидами. Они разлагают такие соединения, как салицилат, нафталин, камфора, октан, толуол, ксилол, бифенил и тд. Большинство D-плазмид выделено в почвенных штаммах бактерий рода псевдомонад (Pseudomonas). Но есть они и у других бактерий: Alcalkjenes, Flavobacterium, Artrobacter и тд. У многих псевдомонад обнаружены плазмиды, контролирующие устойчивость к тяжелым металлам. Почти все D-плазмиды, как говорят специалисты, конъюгативны, т.е. способны самостоятельно переноситься в клетки потенциального реципиента.

D-плазмиды могут контролировать как начальные этапы разрушения органического соединения, так и полное его разложение. К первому типу относится плазмида ОСТ, контролирующая окисление алифатических углеводородов до альдегидов. Содержащиеся в ней гены управляют экспрессией двух ферментов: гидроксилазы, переводящей углеводород в спирт, и алкогольдегидрогеназы, окисляющей спирт в альдегид. Дальнейшее окисление осуществляют ферменты, за синтез которых «отвечают» гены хромосом. Впрочем, большинство D-плазмид принадлежат ко второму типу.

Устойчивые к ртути бактерии экспрессируют ген mеr А, кодирующий белок переноса и детоксикации ртути. Модифицированную конструкцию гена mеr А использовали для трансформации табака, рапса, тополя, арабидопсиса. В гидропонной культуре растения с этим геном извлекали из водной среды до 80% ионов ртути. При этом рост и метаболизм трансгенных растений не подавлялись. Устойчивость к ртути передавалась в семенных поколениях.

При интродукции трех модифицированных конструкций гена mеr А в тюльпанное дерево (Liriodendron tulipifera) растения одной из полученных линий характеризовались быстрым темпом роста в присутствии опасных для контрольных растений концентраций хлорида ртути (HgCI2). Растения этой линии поглощали и превращали в менее токсичную элементарную форму ртути и испаряли до 10 раз больше ионной ртути, чем контрольные растения. Ученые полагают, что элементарная ртуть, испаряемая трансгенными деревьями этого вида, будет тут же рассеиваться в воздухе.

Тяжелые металлы — составная часть загрязнителей земель, используемых в сельскохозяйственном производстве. В случае с кадмием известно, что большинство растений накапливают его в корнях, тогда как некоторые растения, такие как салат-латук и табак, накапливают его в основном в листьях. Кадмий поступает в почву главным образом из промышленных выбросов и как примесь в фосфорных удобрениях.

Одним из подходов к снижению поступления кадмия в организм человека и животных может быть получение трансгенных растений, накапливающих меньшее количества этого металла в листьях. Данный подход представляет ценность для тех видов растений, листья которых используют в пищу или для корма животным.

Можно также использовать металлотионеины — небольшие богатые цистеином белки, способные связывать тяжелые металлы. Показано, что металлотионеин млекопитающих является функциональным в растениях. Получены трансгенные растения, экспрессирующие гены металлотионеинов, и показано, что эти растения были более устойчивыми к кадмию, чем контрольные.

Трансгенные растения с hMTII геном млекопитающих имели на 60-70% ниже концентрацию кадмия в стеблях по сравнению с контролем, и перенос кадмия из корней в стебли также был снижен — только 20% поглощенного кадмия было транспортировано в стебли.

Известно, что растения аккумулируют тяжелые металлы, извлекая их из почвы или воды. На этом свойстве основана фиторемедиация, подразделяемая на фитоэкстракцию и ризофильтрацию. Под фитоэкстракцией понимают использование быстрорастущих растений для извлечения тяжелых металлов из почвы. Ризофильтрация — это абсорбция и концентрация корнями растений токсичных металлов из воды. Растения, вобравшие в себя металлы, компостируют либо сжигают. Растения заметно различаются по аккумулирующей способности. Так, брюссельская капуста может накапливать до 3,5% свинца (от сухого веса растений), а ее корни — до 20%. Это растение успешно аккумулирует также медь, никель, хром, цинк и тд. Фиторемедиация перспективна и для очистки почвы и воды от радионуклидов. А вот токсичные органические соединения растениями не разлагаются, здесь перспективнее использовать микроорганизмы. Хотя некоторые авторы настаивают на снижении концентрации органических загрязнений при фиторемедиации, разрушают их в основном не растения, а микроорганизмы, обитающие в их ризосфере.

Симбиотическому азотфиксатору люцерны Rhlzobium melitotj был встроен ряд генов, осуществляющих разложение бензина, толуина и ксилена, содержащихся в горючем. Глубокая корневая система люцерны позволяет очищать почву, загрязненную нефтепродуктами, на глубину до 2-2.5 метров.

Следует помнить, что большая часть ксенобиотиков появилась в окружающей среде в последние 50 лет. Но в природе уже существуют микроорганизмы, способные к их утилизации. Это говорит о том, что в популяциях микроорганизмов достаточно быстро происходят генетические события, определяющие их эволюцию точнее, микроэволюцию. Поскольку ксенобиотиков в связи с нашей техногенной цивилизацией становится все больше, важно иметь общее представление о метаболизме микроорганизмов, и об их метаболических возможностях. Все это потребовало развитие новой науки — метаболомики. Основана она на том, что бактерии могут приобретать способность к переработке новых соединений в результате мутаций. Как правило, для этого требуется несколько последовательных мутаций или встройка новых генных систем из уже существующих у других видов микроорганизмов. Например, для разложения устойчивого галогенорганического соединения нужна генетическая информация, находящаяся в клетках разных микроорганизмов. В природе такой обмен информацией происходит за счет горизонтального переноса генов, а в лабораториях используются методы ДНК-технологий, взятые из природы.

Дальнейшее развитие фито- и биоремедиации — это комплексная проблема, связанная, в частности, с использованием растений и ризосферных микроорганизмов. Растения будут с успехом извлекать из почвы тяжелые металлы, а ризосферные бактерии — разлагать органические соединения, повышая эффективность фиторемедиации, способствуя росту растений, а растения — развитию обитающих на их корнях микроорганизмов.

Загрязнение окружающей среды можно считать заболеванием экосистем, а биоремедиацию — лечением. Ее следует рассматривать и как профилактику многочисленных заболеваний человека, вызываемых загрязнением среды. По сравнению с другими методами очистки, этот гораздо дешевле. При рассеянных загрязнениях (пестициды, нефть и нефтепродукты, тринитротолуол, которым загрязнены многочисленные земли), ему нет альтернативы. В очистке окружающей среды от загрязнений важно правильно выделить приоритеты, минимизируя риски, связанные с тем или иным загрязнением, и учитывая свойства конкретного соединения и его влияние прежде всего на здоровье человека. Необходимы законодательные акты и правила, регламентирующие интродукцию в окружающую среду ГМ микроорганизмов, с которыми связаны особые надежды на очистку от любых загрязнителей. В отличие от промышленной биотехнологии, где можно строго контролировать все параметры технологического процесса, биоремедиация проводится в открытой системе, где такой контроль затруднен. В известной мере это всегда «ноу-хау», своего рода искусство.

В полной мере преимущество микроорганизмов при очистке от нефтепродуктов удалось продемонстрировать, когда после катастрофы танкера 5000 м3 нефти вылилось в море у берегов Аляски. Около 1,5 тыс. км береговой линии оказалось загрязнено нефтью. К механической очистке привлекли 11 тыс. рабочих и разнообразное оборудование (это обходилось в 1 млн долл. в день). Но был и другой путь: параллельно для очистки берега в почву вносили азотное удобрение, что ускорило развитие природных микробных сообществ. Это в 3-5 раз ускорило разложение нефти. В итоге загрязнение, последствия которого, по расчетам, могли сказываться и через 10 лет, полностью устранили за 2 года, затратив на биоремедиацию менее 1 млн долл.

Развитие биоремедиации, технологий и способов ее применения требуют междисциплинарного подхода и сотрудничества специалистов в области генетики и молекулярной биологии, экологии, и других дисциплин. Таким образом, направления использования генной инженерии очень разнообразны и обширны, а некоторые из них фантастичны и в то же время весьма перспективны по достижимости результатов.

Исследование реакции живых организмов на изменения окружающей среды чрезвычайно важно для оценки влияния этих изменений, особенно имеющих антропогенное происхождение, на биоразнообразие, сохранение которого является важнейшей задачей человеческой цивилизации.

По данным Организации экономического сотрудничества и развития (ОЭСР), потенциальный рынок биоремедиации составляет более 75 млрд долл. Ускоренное внедрение биотехнологий для защиты окружающей среды вызвано, в частности, тем, что они гораздо дешевле других технологий очистки. По мнению ОЭСР, биоремедиация имеет локальное, региональное и глобальное значение, и для очистки будут все шире применять как природные организмы, так и ГМО.

Биотопливо

С учетом ограниченных запасов ископаемой энергии особое внимание в настоящее время должно быть уделено возможности использования новых видов топлива — метана, водорода, и др., а также возобновляемых источников энергии. Однако в общем энергетическом балансе такие экологически безопасные источники энергии, как энергия Солнца, морских течений, воды, ветра и др., могут составить не более 20% от их общего производства.  В этой  ситуации одним  из наиболее перспективных возобновляемых источников энергии становится биомасса, методы использования которой постоянно совершенствуются. При этом наряду с непосредственным сжиганием широкое применение получают процессы биоконверсии, например, спиртовая и анаэробная ферментация, термоконверсии, газификация, пиролиз и пр. Так, например, в Бразилии, в бассейне Амазонки, расширяются площади под культурой маниоки и сахарного тростника для производства спирта, используемого в качестве добавки к топливу, взамен импортируемой нефти. С этой же целью начата эксплуатация естественных зарослей черного лозняка, занимающего в северо-восточных районах страны около 6 млн. га.

Если в Индии, Китае и некоторых других странах сельскохозяйственные отходы утилизируются с целью получения биогаза, то в Швеции, Германии, Бразилии, США, Канаде сельскохозяйственные культуры специально выращивают для производства топливного спирта этанола. Эффективным заменителем ископаемого топлива является масло рапса и сурепицы, яровые формы которых удается возделывать в России вплоть до Полярного круга. Источником растительных масел для получения биотоплива могут быть также соя, подсолнечник и другие культуры. Для получения топливного этанола в Бразилии все шире используют сахарный тростник, а в США — кукурузу.

Коэффициент энергоотдачи (отношение суммарного энергетического эквивалента полезной продукции ко всем энергетическим затратам на ее производство) составляет для сахарной свеклы — 1,3; кормовых трав — 2,1; рапса — 2,6; пшеничной соломы — 2,9. При этом за счет использования в качестве исходного сырья 60 ц соломы пшеницы с каждого гектара можно получить 10 тыс. м3 генераторного газа, или 57,1 ГДж.

В связи с быстрым истощением природных ресурсов нефти, газа и угля во многих странах особое внимание уделяется так называемым нефтеносным растениям — Euphorbia lathyris (молочай масличный) и E.tirucallii из семейства молочайных (Kupharbiacea), содержащих латекс, состав терпенов которого приближается по своим характеристикам к высококачественной нефти. При этом урожайность сухой массы указанных растений составляет около 20 т/га, а выход нефтеподобного продукта в условиях Северной Калифорнии (т.е. в зоне 200-400 мм осадков в год) может достичь 65 баррелей сырья с 1 га. Следовательно, более выгодно выращивать растительные заменители ископаемого топлива, поскольку с каждого гектара можно получать более 3600 нефтедолларов, что в зерновом эквиваленте составит 460 ц/га, т.е. в 20 раз больше средней урожайности пшеницы в США и Канаде. Если вспомнить известный лозунг США «за каждый баррель нефти бушель зерна», то при сегодняшних ценах на нефть, газ и зерно это означает обмен — 1 зернодоллар приблизительно на 25 нефтедоллара. Конечно, баррель нефти не заменит бушель зерна в прямом смысле, и далеко не в каждой зоне удастся возделывать указанные виды растений. Но получение альтернативных видов топлива за счет целенаправленной селекции растений превращает и техногенно-энергетический компонент высокопродуктивных агрофитоценозов в воспроизводимый и экологически безопасный фактор интенсификации растениеводства, и, конечно, это один из самых безболезненных выходов для таких государств как Украина — все в больших масштабах использовать растения в качестве возобновляемых ресурсов, в том числе энергии (биодизельное топливо, смазочные материалы и пр.). К примеру, производство озимого рапса уже обеспечивает соотношение расхода и выхода энергии 1:5.

ГМО и биоразнообразие

Принципиальным моментом современного этапа селекции является отчетливое понимание того, что базой для ее развития, в том числе и с использованием генно-инженерных приемов, является биоразнообразие.

Эволюция растительного царства шла по пути умножения числа видов и их «экологической специализации». Этот факт указывает на опасность снижения биологического (генетического) разнообразия в биосфере в целом и в агроэкосистемах в частности. Резкое сужение видового и генетического разнообразия уменьшило не только устойчивость растениеводства к капризам погоды и изменениям климата, но и возможность с большей эффективностью утилизировать солнечную энергию и другие неисчерпаемые ресурсы природной среды (углерод, кислород, водород, азот и другие биофильные элементы), которые, как известно, составляют 90-95% сухих веществ фитомассы. Кроме того, это приводит к исчезновению генов и генных комбинаций, которые могли бы быть использованы в селекционной работе будущего.

Одна и та же площадь, подчеркивал Ч. Дарвин (1859), может обеспечить тем больше жизни, чем разнообразнее населяющие ее формы. Для каждого культивируемого вида растений, в связи со своей эволюционной историей и специфичной работой селекционера, характерен свой «агроэкологический паспорт», т.е. приуроченность величины и качества урожая к определенному сочетанию температуры, влажности, освещения, содержания элементов минерального питания, а также их неравномерное распределение во времени и пространстве. Поэтому снижение биологического разнообразия в агроландшафтах уменьшает в том числе и возможность дифференцированного использования ресурсов природной среды, а, следовательно, и реализации дифференциальной земельной ренты I и II типа. Одновременно ослабляется и экологическая устойчивость агроэкосистем, особенно в неблагоприятных почвенно-климатических и погодных условиях.

Известны масштабы бедствия, вызванные поражением картофеля фитофторой и нематодой, катастрофические потери пшеницы из-за поражения ржавчиной, кукурузы в связи с эпифитотией гельминтоспориоза, уничтожением плантаций тростника из-за вирусов и тд.

О резком снижении генетического разнообразия культивируемых в начале XXI столетия видов растений наглядно свидетельствует тот факт, что из 250 тыс. видов цветковых растений за последние 10 тыс. лет человек ввел в культуру 5-7 тыс. видов, из которых всего лишь 20 культур (14 из них относятся к зерновым и бобовым) составляют основу современного рациона населения Земли. В целом же к настоящему времени около 60% продуктов питания производится благодаря возделыванию нескольких зерновых культур, а свыше 90% нужд человека в продовольствии обеспечивается за счет 15 видов сельскохозяйственных растений и 8 одомашненных видов животных. Так, из 1940 млн. т производства зерновых почти 98% приходится на пшеницу (589 млн. т), рис (563 млн. т), кукурузу (604 млн. т) и ячмень (138 млн. т). Из 22 известных видов риса (род Oryza) широко возделывают лишь два (Oryza glaberrima и O.sativa). Аналогичная ситуация сложилась и с бобовыми культурами, валовое производство 25 наиболее важных видов которых составляет всего лишь около 200 млн. т. Причем большая часть из них приходится на сою и арахис, возделываемых в основном в качестве масличных культур. По этой причине в рационе человека значительно уменьшилось разнообразие органических соединений. Можно предположить, что для Homo sapiens как одного из биологических видов в эволюционной «памяти» зафиксирована потребность в высокой биохимической вариабельности пищи. Поэтому тенденция к росту ее однообразия может иметь самые негативные последствия для здоровья. В связи с широким распространением онкозаболеваний, атеросклероза, депрессии и других болезней обращается внимание на недостаток витаминов, тонизирующих веществ, полиненасыщенных жиров и других биологически ценных веществ.

Очевидно, что важным фактором распространения той или иной ценной культуры являются масштабы ее использования. Так, быстрое наращивание площади сои и кукурузы в США и других странах обусловлено производством сотен наименований соответствующей продукции. Задача диверсификации весьма актуальна и для других культур (из сорго, например, стали получать высококачественное пиво, из ржи — виски и т.д.).

Большего внимания в плане решения взаимосвязанных проблем здоровой пищи и повышения видового разнообразия агроэкосистем заслуживает и увеличение площади под посевами таких ценнейших культур, как гречиха (Fagopyrum), обладающая высокими адаптивными возможностями в различных, в том числе неблагоприятных условиях внешней среды, амарант (Amaranthus), лебеда (Chenopodium quinoa), рапс, горчица и даже картофель.

С развитием географических открытий и мировой торговли получила широкое распространение и интродукция новых видов растений. Письменные памятники свидетельствуют, например, о том, что еще в 1500 г. до н.э. египетский фараон Хатшепсут отправил корабли в Восточную Африку с целью сбора растений, используемых при религиозных обрядах. В Японии установлен памятник Taji Mamori, который по приказу императора ездил в Китай для сбора цитрусовых растений. Особую роль в мобилизации генетических ресурсов растений сыграло развитие сельского хозяйства. Из истории США известно, что уже в 1897 г. Niels Hansen прибыл в Сибирь в поисках люцерны и других кормовых растений, способных успешно произрастать в засушливых и холодных условиях прерий Северной Америки. Считается, что именно из России в тот период были интродуцированы в США такие важнейшие кормовые культуры, как костер, свинорой, овсяница, ежа сборная, полевица белая, люцерна, клевер и многие другие. Примерно тогда же Mark Carleton собирал в России сорта пшеницы, из которых харьковский сортотип в течение длительного периода занимал ежегодно в США более 21 млн. акров и стал основой производства твердой пшеницы в зоне Северных равнин (Жученко, 2004).

Введение в культуру новых видов растений продолжается и в настоящее время. В Перуанских Андах обнаружена разновидность люпина (тарви), употреблявшегося в пищу предками современных индейцев, который по содержанию белка превосходит даже сою. Кроме того, тарви устойчив к пониженным температурам, нетребователен к плодородию почвы. Селекционерам удалось получить формы тарви, содержащие менее 0,025% алкалоидов против 3,3% в исходном материале. К числу видов, представляющих экономическую ценность, можно отнести также австралийскую траву (Echinochloa lurnerana), которая может оказаться отличной, не уступающей просу зерновой культурой для очень засушливых зон. Среди перспективных культур заслуживает внимания и вид Bauhinia esculenta, который, как и Psophocarpus tetragonolobus, образует клубни, а его семена содержат более 30% белка и жира. В очень засушливых условиях может быть использован вид Voandzeia subterranea, который не только богат белком, но и более засухоустойчив по сравнению с арахисом, а также лучше противостоит болезням и вредителям. Для засушливых и неплодородных земель из масличных культур перспективным считается вид Cucurbita foetidissima из семейства Cucurbitaceae, а для засоленных пастбищных земель — некоторые виды лебеды рода Atriplex из семейства Chenopodiaceae, которые выделяют избыточную соль через листья.

В настоящее время во многих странах мира ведется активная селекционная работа с щирицей (Amaranthus), забытой культурой инков, в семенах которой по сравнению с используемыми зерновыми колосовыми видами растений содержится вдвое больше белка, в том числе в 2-3 раза больше лизина и метионина, в 2-4 раза больше жира и тд. Обнаружены линии кукурузы, фиксирующие, благодаря присутствию на их корнях бактерий Spirillum lipoferum, атмосферный азот в таком же количестве, как и растения сои. Было установлено, что азотфиксирующие бактерии функционируют и на корнях целого ряда видов тропических трав, усваивая при этом азот не менее активно, чем бактерии рода Rhizobium у бобовых. Так, удалось обнаружить виды тропических трав, способные фиксировать до 1,7 кг азота в день на 1 га, т.е. 620 кг/год.

Во многих странах, в том числе европейских, картофель является основным источником витамина С, поскольку его потребляют в большом количестве. Известно, что производство картофеля в мире составляет около 300 млн. т.

В то же время из 154 известных видов картофеля повсеместное распространение получил лишь один — Solanum tuberosum. Очевидно, что в связи с возросшими возможностями селекции по увеличению потенциальной продуктивности растений, а также потребностями в повышении экологической устойчивости агроценозов и освоении малопригодных для растениеводства территорий масштабы деятельности человека по введению в культуру новых видов растений значительно увеличатся. В конечном счете, «бессознательный» (термин Дарвина) и сознательный отбор привели к тому, что адаптивный потенциал культурных растений существенно отличается от такового их диких предков не только в силу различий самих критериев адаптивности, но и по основным его компонентам: потенциальной продуктивности, устойчивости к абиотическим и биотическим стрессам, содержанию хозяйственно ценных веществ.

Наряду с сохранением растительного генофонда в заповедниках, заказниках и национальных экопарках, т.е. в условиях in situ, в предстоящий период все более важную роль будет играть создание «банков генов», или «банков зародышевой плазмы», обеспечивающих безопасное сохранение коллекций ex situ. Инициатором организации последних был Н.И. Вавилов, собравший в ВИРе самый большой в мире на то время банк растительных ресурсов, послуживший примером и основой для всех последующих банков, а самое главное — не раз спасавший ряд стран от опустошения и голода (например, благодаря наличию в генбанке ВИР генов устойчивости).

Благодаря продолжению идеологии Н.И. Вавилова, к концу 90-х годов национальные и международные коллекции растений насчитывали свыше 6 млн. образцов, в том числе более 1,2 млн. зерновых, 400 тыс. продовольственных бобовых, 215 тыс. кормовых, 140 тыс. овощных, свыше 70 тыс. корнеплодов. При этом 32% образцов сохраняется в Европе, 25% — в Азии, 12% — в Северной Америке, по 10% — в Латинской Америке и Международных центрах, 6% — в Африке, 5% — на Ближнем Востоке.

Держателями наиболее крупных по количеству и качеству образцов генетических коллекций являются США (550 тыс.), КНР (440 тыс.), Индия (345 тыс.) и Россия (320 тыс.). Наряду с сохранением растительных ресурсов в генбанках все большее распространение получает создание естественных заповедников флоры и фауны. Благодаря резко возросшей интеграции мирового рынка продовольствия, между странами значительно увеличился и обмен генетическими ресурсами растений. В основе этих процессов лежит понимание того, что ни одна страна или регион не являются самодостаточными в плане обеспечения генетическими ресурсами. Мобилизации генетических ресурсов во многом способствовали создание в ряде стран национальных ботанических садов. В их числе, например ботанический сад, созданный в Лондоне в 1760 г. и постоянно завозивший экзотические виды растений из колониальных стран.

В настоящее время координацию работ по сохранению растительного генофонда в мире осуществляет Международный совет по генетическим ресурсам растений (IBPGR). С 1980 г. реализуется Европейская программа сотрудничества в области генетических ресурсов. Важную роль в этом играют также Комиссия ФАО по генетическим ресурсам растений, решения международных конференций, принятая в 1992 г. Конвенция по биологическому разнообразию. При этом функционируют генные банки  разных типов. Некоторые из них поддерживают только одну культуру и ее диких сородичей, другие — несколько культур определенной почвенно-климатической зоны; если одни содержат базовые коллекции длительного хранения, то другие ориентированы на удовлетворение нужд селекцентров и научно-исследовательских учреждений. Так, в генном банке в Kew Gardens (Англия) хранятся исключительно дикорастущие растения (около 5000 видов).

Адаптивная стратегия интенсификации сельского хозяйства выдвигает качественно новые требования к мобилизации мировых растительных ресурсов в плане сбора, хранения и использования генофонда, в том числе введения в культуру новых видов растений. В настоящее время под угрозой полного уничтожения в мире находится свыше 25 тыс. видов высших растений, в том числе в Европе — каждый третий из 11,5 тыс. видов. Уже навсегда потеряны многие примитивные формы пшеницы, ячменя, ржи, чечевицы и других культур. Особенно быстро исчезают местные сорта и сорные виды. Так, если в Китае и Индии в начале 50-х гг. XX в. использовались тысячи сортов пшеницы, то уже в 70-е — лишь десятки. В то же время каждый вид, экотип, местный сорт — это уникальный, созданный в течение длительного естественного или искусственного отбора комплекс коадаптированных блоков генов, обеспечивающих, в конечном счете, наиболее эффективную утилизацию природных и антропогенных ресурсов в той или иной экологической нише.

Понимание ретроспективной природы эволюционной «памяти» высших растений со всей определенностью указывает на необходимость сохранения видового разнообразия флоры не только в генных банках и центрах генетических ресурсов, но и в естественных условиях, т.е. в состоянии постоянно эволюционирующей динамичной системы. Одновременно значительно большего внимания заслуживает создание генетических коллекций генетических систем преобразования генетической информации, включающих rес-системы, mei-мутанты, гаметоцидные гены, полиплоидные структуры, разные типы рекомбинационных систем, систем репродуктивной изоляции и др. Понятно, что именно они могут быть существенны для развития селекции будущего с использованием генно-инженерных технологий. Важно также выявлять и сохранять генетические детерминанты формирования устойчивых гомеостатических систем, синергетических, кумулятивных, компенсаторных и других ценотических реакций, обеспечивающих экологическую «буферность» и динамическое равновесие биоценотической среды. Большего внимания заслуживают и такие генетически детерминированные признаки растений, как конкурентоспособность, аллелопатические и симбиотические взаимодействия и другие средообразующие эффекты, реализуемые на биоценотическом уровне. Особое внимание должно быть уделено видам растений, обладающих конститутивной устойчивостью к экологическим стрессорам. Известно, что во второй половине XX в. в ряде стран значительно (порой в 60-80 раз) возросли площади под такого типа культурами.

В настоящее время в мире функционирует свыше 1460 национальных генных банков, в том числе около 300 крупных, в которых в условиях ex situ обеспечивается гарантированное хранение образцов культурных растений и их диких сородичей. Хранителями коллекций ex situ являются и ботанические сады, которых в мире насчитывается около 2 тыс. (около 80 тыс. видоврастении, 4 млн. образцов и 600 банков семян). Их наличие — это признак национального суверенитета, уровня культуры, заботы о будущем страны и мира. К 2002 г. в международных центрах, находящиеся под контролем консультативной группы ФДО, сохранилось свыше 532 тыс. образцов растений, из которых 73% принадлежит к традиционным и староместным сортам, а также диким сородичам культурных растений. Как отмечает Длексанян (2003), следует различать понятия «генбанк» и «коллекции ex silu». Если первое — это гарантированное хранение генофонда в специально оборудованных помещениях, то «коллекции ех situ» включают образцы, которые представляют интерес для их держателей.

В начале 50-х гг. XX века был получен первый полукарликовый сорт риса за счет использования гена карликовости китайского сорта Fee-geo-woo, а сорт пшеницы Gaines на орошаемых землях тихоокеанского Северо-Запада США дал рекордный урожай — 141 ц/га. В 1966 г. был создан сорт IR 8, получивший прозвище «чудо-рис». При высокой агротехнике эти сорта давали 80 и даже 130 ц/га. Аналогичные результаты удалось получить и на просе. Если у старых сортов индекс урожая составлял 30-40%, то у новых — 50-60% и выше.

Дальнейшие возможности увеличения урожайности за счет роста индекса урожая ограничены. Поэтому значительно большее внимание должно быть уделено повышению величины чистого фотосинтеза. Необходима ориентация на широкую видовую и сортовую гетерогенность агроэкосистем и агроландшафтов в условиях полевого растениеводства, наряду с подбором страховых культур, а также культур и сортов-взаимострахователей, включает и дифференцированный подход к реализации адаптивного потенциала каждого из них. Высокая потенциальная продуктивность сорта и агроэкосистемы, достигаемая путем (а иногда и за счет) снижения их экологической устойчивости к лимитирующим величину и качество урожая факторам внешней среды, так же как и функционирование избыточно биоэнергозатратной экологической устойчивости, не могут рассматриваться в качестве адаптивных, поскольку для культивируемых растений основным показателем адаптивности в конечном счете является обеспечение высокой величины и качества урожая. Источником для научно обоснованной селекции по созданию необходимых сортов могут быть генофонды, накопленные в генбанках.

Следует подчеркнуть, что в мировых генбанках культурных растений собраны миллионы образцов, однако до сих пор только 1% из них исследован в отношении их потенциальных свойств (Жученко, 2004). В то же время ведущее значение для создания устойчивых агросистем имеет контроль и совершенствование их генетической компоненты — генофондов сельскохозяйственных видов, определяющее особенности локальных агросистем.

Генетически модифицированные организмы и оценка их безопасности

Общие правила проверки безопасности ГМО

В США безопасность всех ГМО проверяют три федеральных органа: Министерство сельского хозяйства, ответственное за то, чтобы выращивание любого сорта сельскохозяйственных культур не оказывало вредного влияния на все остальные растения; Агентство по охране окружающей среды, особо отвечающее за проникновение на рынок растений, обладающие устойчивостью к гербицидам, насекомым-вредителям и наиболее распространенным заболеваниям, и, наконец, Комиссия по контролю продуктов питания и лекарственных средств, в чьем ведении находится пищевая безопасность населения. К ГМ продуктам все они предъявляют требования гораздо более высокие, чем к сортам, полученным в результате обычной селекции, в которой мутации вызваны облучением или применением химикатов. В то же время общество должно отчетливо сознавать, что в природе не бывает «нулевого биологического риска», представление о котором — всего лишь воплощение не основанного ни на каких научных данных «принципа предосторожности», используемого противниками ГМО как уловка, цель которой — воспрепятствовать развитию этого направления науки и технологии. Поданным Американского совета по науке и здравоохранению, пока нет достоверной научной информации, свидетельствующей о какой-либо опасности, присущей ГМО.

Рекомбинантные ДНК на протяжении 35 лет с успехом используются в фармацевтике, где до сих пор не зафиксировано ни одного случая вреда, вызванного генноинженерными процессами. Точно так же нет ни одного свидетельства каких-либо нарушений, вызванных потреблением ГМ продуктов, а их потребляют сотни миллионов людей.

Основные разработчики генетически модифицированных сельскохозяйственных культур — научные центры, чьи исследования традиционно были направлены на создание химических препаратов для агропромышленного сектора. Проведение параллельных разработок в области биотехнологии и химии приводит к созданию тандема пестицид — растение, имеющее устойчивость к данному пестициду.

Медико-биологическая оценка ГМО состоит из нескольких блоков исследований, выполнение каждого из которых обязательно. В соответствии с установленным порядком, санитарно-эпидемиологическая экспертиза каждого ГМО, впервые поступающего на рынок России в качестве пищевого или фуражного сырья, осуществляется по трем направлениям: медико-генетическая оценка; медико-биологическая оценка; оценка технологических параметров.

Медико-генетическая оценка, основанная на применении полимеразной цепной реакции (ПЦР), включает анализ вносимой последовательности генов, маркерных генов, промоторов, терминаторов, стабильности и уровня выраженности генов. Технологическая оценка определяет органолептические и физико-химические свойства, а также влияние генетической модификации на технологические параметры продукции. Определение композиционной эквивалентности включает сравнение макро- и микронутриентного состава, содержания специфических компонентов, биологически активных веществ, природных и антропогенных контаминантов ГМ продукта и его традиционного аналога. Хроническая токсичность продукта оценивается в проводимом на лабораторных животных в течение 6 месяцев эксперименте, во время которого в их рацион включается исследуемый продукт в максимально возможном количестве, не нарушающем баланс основных пищевых веществ. Ведется динамическое наблюдение за интегральными показателями (внешний вид, масса тела и др.), биохимическими и морфологическими. Специальные исследования проводятся для выявления возможного влияния на иммунный статус, мутагенного, канцерогенного, генотоксичного, нейротоксичного действия. В качестве чувствительных биомаркеров используются показатели, отражающие уровень адаптации организма к окружающей среде и обладающие высокой чувствительностью к разнообразному чужеродному влиянию.

Особое внимание уделяется системам, осуществляющим защиту организма от воздействия токсичных соединений как экзогенного, так и эндогенного происхождения. В первую очередь это ферменты I и II фазы метаболизма ксенобиотиков, а также ферменты лизосом. Многие физиологические и метаболические функции тесно связаны с процессами свободнорадикального окисления, а изменение состояния этих процессов представляет собой раннюю неспецифическую реакцию организма на экстремальные воздействия. В связи с этим определение активности ферментов системы антиоксидантной защиты и содержания продуктов перекисного окисления липидов — ранний и информативный тест при гигиенической оценке влияния неблагоприятных факторов окружающей среды и, в частности, контаминантов пищевых продуктов. В настоящее время система оценки безопасности пищи из ГМО, действующая в Российской Федерации, — одна из самых строгих в мире. Из-за определенного отставания в области внедрения в практику новейшей биотехнологии Россия имеет преимущество при оценке безопасности трансгенных продуктов. Анализ результатов пострегистрационного мониторинга, проводящегося в странах, уже использующих ГМО, позволяет в высшей степени объективно подойти к исследованиям ГМ продукта. К сожалению, такая система в Украине до сих пор не принята. В 1998 году поступила первая заявка от фирмы «Монсанто» (США) на регистрацию в Российской Федерации генетически модифицированной сои, имеющей кодовый номер 40-3-2, устойчивой к пестициду глифосату, и двух сортов картофеля, устойчивых к колорадскому жуку. В этом же году разработан порядок регистрации ГМО, впервые поступающих на внутренний рынок Российской Федерации, который был утвержден в 1999 году постановлением главного государственного санитарного врача Российской Федерации № 7 от 06.04.99 г. и в дальнейшем усовершенствован (постановление N2 14 от 08.11.2000 г.).

Устойчивая к глифосату соя линии 40-3-2 фирмы «Монсанто» была первой генетически модифицированной культурой, прошедшей регистрацию в Российской Федерации. Она разрешена для использования в пищевой промышленности и реализации населению в 1999 году. В настоящее время для импорта и использования для пищевых целей в России разрешены 13 сортов генетически модифицированных культур, среди которых 3 сорта сои, 6 сортов кукурузы, 2 сорта картофеля, один сорт сахарной свеклы и риса.

Система оценки качества и безопасности пищевой продукции из ГМО, принятая в России, предполагает проведение пострегистрационного контроля над оборотом этой продукции. Он может рассматриваться как барьер, закрывающий поступление на внутренний рынок пищевой продукции из ГМО, не прошедшей систему регистрации, и такой, которая не имеет соответствующей декларации на наличие ГМО (без такой декларации производители или поставщики вводят потребителя в заблуждение относительно технологии производства продукта). Для осуществления контроля необходимы методы, позволяющие надежно определить наличие ГМИ в пищевых продуктах.

Тревоги обоснованные и мнимые

Современная селекция растений — это научно обоснованная технология управления наследственностью и изменчивостью высших эукариот, позволяющая    реализовать   социально-экономические, экологические, эстетические и другие цели. Являясь средством биологического контроля над адаптивными и адаптирующими реакциями растений с целью непрерывного увеличения их продукционных и средообразующих возможностей, адаптивная система селекции технологизирует достижения как прикладных, так и фундаментальных знаний.

Мир, в котором мы живем в начале XXI века, называют по-разному: «информационное общество», «постиндустриальный мир», «технотронная цивилизация», «постчеловеческая эра» и тд. А недавно в среде философов и социологов возникло еще одно определение — «общество риска».

Да, человечество все чаще идет на риск — вынужденный, заменяя тепловые электростанции атомными, органические удобрения — химическими, лук и чеснок — на антибиотики и тд. По мере исчерпания старых возможностей, всего того, что уже не работает в данном пространстве и в данном времени с n числом условных измерений, человек поневоле должен сделать еще один шаг вперед — перейти в пространство n+1, опять же условных, измерений. Человекомерность — необходимый элемент жизни человечества, размерность мира непрерывно возрастает, растет и количество новых опасных рисков. Кончаются нефть, газ, требуется создание принципиально новых видов топлива и тд.

Биотехнология — это тоже необходимая группа риска. Для продуктов генной инженерии нет пути назад. Генетически модифицированный организм может размножаться, обмениваясь генетическим материалом. Вот конкретный пример — сорта сои. Биотехнологи сделали их устойчивыми к гербициду глифосату. Теперь фермеры могут применять этот гербицид без ущерба для урожая бобов. Результат? Урожай спасен и выгоден конкретному фермеру, но все растения на поле с соей могут быть уничтожены за один раз. Это плохо, но почва и вода не отравлены многими гербицидными обработками.

Это лишь один пример. А общая тенденция в мире — для увеличения количества продовольствия необходимо увеличение количества применяемых гербицидов.

О гербицидах стоило бы завести отдельный большой разговор. XXI век — век глобализации. Во всем. Считается, что «глобальному» человеку требуется и «глобализированная» пища. И ее уже производят из генетически модифицированных растений. Но ГМО уже одним своим существованием способствуют уменьшению на Земле пестицидов.

Пестициды в корне изменили вековые устои земледелия, благодаря им накормлены миллиарды голодных. Последние пятьдесят лет можно считать эпохой глобальной ядохимизации. Полвека мир расколот надвое. Одни считают пестициды величайшим злом, способным в конце концов убить природу и человека, другие — наоборот, чудодейственным лекарством для растений. Создалась странная ситуация. Сотни миллионов людей во всем мире, садящихся за руль авто, обязаны хотя бы «на удовлетворительно» знать его теорию и устройство, не говоря уже о правилах безопасности. В то же время большинство людей, которые применяют пестициды в полях, садах и огородах, в лучшем случае что-то там слышали про норму расхода препарата на гектар. Хотя неизвестно, что опаснее — автомобиль или пестициды. Ведь любое лекарство становится ядом, когда его доза превышает медицинскую норму. Поэтому широкое внедрение в практику земледелия ядохимикатов может в скором времени обернуться для человечества катастрофой.

Поэтому в США создали и ускоренно внедряют генетически модифицированные сорта зерновых, устойчивые к болезням и засухе, к тому же — вдвое более урожайные. Семенной фонд страны в 1999 году почти на 40 процентов состоял из такого «суперзерна» (генетически измененной кукурузы). Но возникли проблемы. С середины 1990-х гг. в средствах массовой информации появился ряд тревожных публикаций о трансгенных организмах. Пищевая и экологическая безопасность каждого нового генно-модифицированного растения и продуктов на его основе привлекает внимание общественности, в связи с широким освещением данной проблемы телевидением и прессой, а также в результате акций таких общественных организаций, как Гринпис (Greenpeace), «Друзья Земли» (Frends of the Earth) и др. В 1996 г. была принята Резолюция о защите диетических прав американских евреев, в которой подчеркивается, что «искусственная передача генетического материала между видами, в природе не скрещиваемыми, является серьезным нарушением божьего закона... Поскольку большинство видов насекомых и животных — некошерны, то таким же будет большинство продовольственных товаров из трансгенных растений». Это положение является в основном причиной формирования отрицательного мнения у религиозной еврейской общественности. Вместе с тем у различных религиозных конфессий отсутствует единое мнение на этот счет.

Следует отметить, что реакция на продукты из генетически модифицированных источников пищи является различной в США и Европе. Потребители в США выражают в основном позитивное отношение к генной инженерии. В ходе национального социологического опроса, проведенного Международным Советом по информации в области продовольствия в 1999 г., показано, что около 75% американцев рассматривают применение биотехнологии как большой успех общества, особенно в последние 5 лет, а 44% европейцев — как серьезный риск для здоровья. При этом 62% американцев готовы купить генетически модифицированный продукт, обладающий большей свежестью или улучшенным вкусом; на этот же шаг готовы только 22% европейцев. Противники технологии рекомбинантной ДНК, составившие 30% в Европе и 13% в США, считают, что данная технология является не только рискованной, но морально неприемлемой.

В любой новой отрасли науки возникает множество вопросов, начинающихся со слов «а что, если?». Но история не раз доказывала, что в том и состоит одна из главных задач любой науки — чтобы объяснить достоинства и недостатки новых технологий, а биологической науки — обеспечить безопасность продуктов при их широком использовании в производстве. Для положительной оценки достижений генной инженерии необходимо, чтобы научные учреждения активнее информировали общественность и население о волнующих их аспектах биотехнологии, отвечали на возникающие вопросы и рассеивали сомнения потребителей по вопросам пищевой и экологической безопасности.

Следует также отметить, что, хотя конфетных примеров серьезной экологической опасности трансгенных сортов и гибридов в природной среде не выявлено, их потенциальная опасность не подвергается сомнению.

Прогнозы строятся пока не на фактических данных, а на основании общебиологических закономерностей, вытекающих из положений генетики популяций и тд. Они дают возможность выявить вероятные механизмы отрицательных последствий широкого распространения генетически модифицированных растений и оценить потенциальные риски — вероятность осуществления нежелательного воздействия генно-модифицированного организма на окружающую среду, сохранение и устойчивое использование биологического разнообразия, включая здоровье человека, вследствие передачи генов.

Знание потенциальных рисков применения генетически модифицированных источников пищи обусловливает возможность исключения либо снижения их отрицательного воздействия.

Все понимают, что следующим шагом для прикладной генетики могут стать эксперименты на человеческих генах. И «генетические» бомбы могут оказаться пострашнее атомных.

Первый кризис, связанный с генетически модифицированными организмами, начался летом 1971 года. В то время молодой ученый Роберт Поллак в лаборатории Колд-Спринг-харбор (на Лонг-Айленде, штат Нью-Йорк, США), руководимой Джеймсом Уотсоном, занимался проблемой рака. Круг научных интересов Поллака был широк. И вот Поллак узнает, что в другой   лаборатории   (в   Пало-Альто,   Калифорния),   у   Пола Берга планируются эксперименты по встраиванию молекул ДНК онкогенного (вызывающего раковые заболевания) вируса SV40 в геном кишечной палочки. Последствия таких опытов? А не возникнет ли эпидемия рака (было известно, что, почти безвредный для обезьян, вирус SV40 вызывает рак у мышей и хомяков)? Начиненные опасными генами бактерии, плодясь миллиардами за сутки, могли бы, по мнению Поллака, представлять серьезную опасность. Поллак тут же позвонил Бергу по телефону и спросил его, отдает ли он себе отчет в опасности экспериментов? Не станут ли бактерии с генами вируса SV40 биологической бомбой замедленного действия?

Этот телефонный разговор и был началом той тревоги, которая вскоре охватила молекулярных биологов. Берг отложил свои исследования. Он стал размышлять, может ли реально Escherichia coll (кишечная палочка) со встроенным в нее вирусом SV40 вызвать столько неприятностей? Мучительные раздумья мало что прояснили. Четкого ответа не было из-за скудости сведений, имеющихся у специалистов в то время. Позже Берг все же решил, что «риск здесь не равен нулю», сам позвонил Поллаку и попросил его помочь организовать конференцию ученых, которая могла бы оценить степень опасности генноинженерных работ. Эта конференция состоялась в 1973 году. А немного позднее стало известно, что пересадка генов из проекта превратилась в реальность. Что американцы Стэнли Коэн и Энни Чанг из Станфордского университета получили плазмиду-химеру, состоящую из двух бактериальных плазмид (плазмиды SC101 из кишечной палочки с плазмидой 1258 из золотистого стафилококка) и ввели ее в кишечную палочку. И такая химерическая Escherichia coli стала размножаться. Эпоха генной инженерии началась.

Вот тут ученые забеспокоились. Они обратились в Национальную академию США с просьбой детально рассмотреть вопрос о рекомбинантных ДНК. Более того, исследователи решили предать дело гласности. Адресованное в академию письмо было послано в солидный и очень популярный еженедельный журнал, который, хотя этот печатный орган предназначен для профессиональных научных работников, обычно от корки до корки прочитывается корреспондентами всех важнейших средств массовой информации.

Так в 1974 году широкая публика получила доступ к дискуссии ученых, которые уже не могли игнорировать или замалчивать вопрос о безопасности своих исследований в области генной инженерии. Группа Берга в письме (оно было озаглавлено «Потенциальные биологические опасности рекомбинантных ДНК») рекомендовала «тщательно взвешивать» вопрос о введении ДНК животных и человека в бактерии. То был фактически призыв наложить на создание молекулярных химер временный, до созыва международной конференции, мораторий, первая попытка саморегулирования научной биологической деятельности. Напомним, что в 40-х годах прошлого века группа ученых во главе с физиком Лео Сцилардом обратилась к своим коллегам с просьбой приостановить публикацию научных результатов, чтобы лишить фашистскую Германию доступа к ядерной информации. Но на сей раз борьба шла уже за запрещение не атомной, а генной бомбы. Вот так началось то, что позднее Джеймс Уотсон назовет «драмой вокруг ДНК». В феврале 1975 года в Асиломаре (Калифорнийское побережье США) состоялась крупная международная конференция. Собрались 140 ученых из 17 стран, были здесь и советские молекулярные биологи — академики Владимир Александрович Энгельгардт, Александр Александрович Баев и другие исследователи. Обсуждались не только научные, связанные с конструированием гибридных ДНК проблемы, но и социальные, этические и иные аспекты этих работ.

Некоторые доклады ученых носили сенсационный характер. Так выяснилось, что в США уже был невольно поставлен масштабный эксперимент на человеке. Оказалось, что вакцина против полиомиелита заражена жизнеспособным вирусом SV40. За десятилетний период, с 1953 по 1963 год, эту зараженную вакцину привили примерно сотне миллионов детей. Причем проверка показала, что вирус SV40 сохраняется в организме. Однако, к счастью, никакого увеличения частоты раковых заболеваний у этих детей отмечено не было. В Асиломаре разгорелся жестокий спор сторонников и противников продолжения генетических экспериментов.

Решение конференции было половинчатым: генноинженерные работы были запрещены лишь частично. По степени риска эксперименты были разбиты на три категории — от опытов с минимальным риском до высокоопасных. Многие генно-инженерные эксперименты было решено вести в особых лабораториях. К ним допускались лишь те, кто сдал экзамен по «технике генетической безопасности». Весь воздух, выходящий из лаборатории, — он мог содержать опасные микробы, — должен был пропускаться через системы сложных фильтров. Экспериментатор, работающий в перчатках, имел дело с биоматериалом, который находился в специальной защитной кабине, отделенной от остальной части лаборатории завесой из циркулирующего воздуха. Персонал перед выходом из лаборатории обязан был принимать душ и менять одежду.

Все это очень усложняло до того сравнительно простые эксперименты, которые вели молекулярные биологи. В США требованиям, предъявляемым «очень опасным» работам, больше всего тогда соответствовала лаборатория базы ВВС в Эймсе (Калифорния). Она была спроектирована и построена для содержания в карантине образцов грунта, доставленных с Луны.

В те годы не только в США, но и во многих других странах началась работа над инструкциями по допустимым условиям генно-инженерной деятельности. В СССР особая комиссия (ее возглавил академик А.А. Баев) разработала «Временные правила безопасности работ с рекомбинантными ДНК» (1978 год). Конференция в Асиломаре не смогла дать исчерпывающих ответов на все вопросы, поднятые Поллаком, Бергом и другими исследователями. Защитные мероприятия оказались очень дорогостоящими, вред генетических исследований не был доказан. Вообще, ученые еще раз отчетливо осознали всю бездну своего незнания. В таких условиях принять какие-то радикальные меры было трудно. Постепенно шум вокруг «расщепленной» ДНК затих. Запреты на опыты были сняты. Но, хотя страсти временно улеглись, проблема потенциальной опасности подобных исследований не стала менее значительной. На конференции в Асиломаре был поставлен вопрос: может ли человек играть роль Всевышнего? Первооткрыватель структурных особенностей ДНК Эрвин Чаргафф вопрошал тогда: «Имеем ли мы право необратимо противодействовать эволюционной мудрости миллионов лет только для того, чтобы удовлетворить амбиции и любопытство нескольких ученых?» Чаргаффу с не меньшими резонами отвечал американец Герберт Бойер (он первым генно-инженерными путями синтезировал инсулин): «Эта так называемая эволюционная мудрость дала нам комбинацию генов для бубонной чумы, оспы, желтой лихорадки, тифа, полиомиелита, диабета и рака. Это та мудрость, которая продолжает давать нам не поддающиеся контролю болезни, такие, как лихорадка Ласса, магдебургский вирус и совсем недавно... вирус геморрагической лихорадки, приносящий около 100 процентов смертности у инфицированных людей в Заире и Судане...» Не удовлетворенный подобной аргументацией, сомневающийся, что вероятность опасных последствий можно свести к минимуму, Эрвин Чаргафф, как обычно с иронией, заметил: «...Поджигатели сформировали свою собственную пожарную команду».

Не все были согласны со столь пессимистическими оценками. Были и полярные мнения, что рекомбинантные ДНК совершенно нежизнеспособны вне тех искусственных условий, в которых их культивируют. Так что никакой опасности нет. Что ситуация полностью под контролем. Что опасны и зажигалка, и газовая плита, и электрический утюг. И что было бы безрассудно отказаться от генетических исследований просто из соображений «как бы чего не вышло».

Можно считать доказанным, что целостность генома вида (а во многих аспектах и сорта) защищена каскадом генетических систем, канализирующих процессы генетической изменчивости и ограничивающих спектр доступных естественному и искусственному отбору рекомбинантов (особенно интрогрессивных и трансгрессивных). Другими словами, status quo генофонда высших эукариот количественно и качественно поддерживается множеством механизмов. Разумеется, роль канализированности генетической изменчивости, весьма относительная при естественной эволюции, оказывается существенной в селекции, когда на создание новых сортов растений со все большей урожайностью и комплексом хозяйственно ценных признаков отводятся лишь считанные годы. Бесспорно, мы еще весьма далеки от полного использования той генетической изменчивости, которая обеспечивается за счет традиционных методов селекции. Однако необходимость расширения и качественного изменения спектра доступной отбору генотипической изменчивости культурных растений стала очевидной и неотложной.

Ситуация под контролем? Действительно, за прошедшие (с 1972 года) треть с лишним века ни одной генной аварии вроде бы не произошло. Но вспомним про Чернобыль: 32 года (с 1954, тогда в СССР в Обнинске была построена первая в мире АЭС) атомные станции казались абсолютно надежными, и вдруг...

Однако опасность может появиться с самой неожиданной стороны. Так, некоторые ученые уже предупреждают о возможности «этнического оружия». Ведь если станет ясно, какие из генов характерны для той или иной расы людей, то можно будет избирательно воздействовать на эти гены так, чтобы уничтожить определенную нацию...

Первый испытательный ядерный взрыв был произведен в США 16 июля 1945 года. Атомная бомба — не игрушка, руководители американского «Манхэттенского проекта» забеспокоились: а не приведет ли испытание к глобальной катастрофе? Не будет ли запущена цепная реакция, которая охватит всю атмосферу? Ведь в принципе даже кислород и азот могут участвовать в термоядерных реакциях синтеза. И тогда весь земной шар может превратиться в одну гигантскую бомбу. Опросили физиков-теоретиков. Самому дотошному и аккуратному из них — Грегори Брейту — было поручено дать обоснованное заключение. Ученый тщательно проанализировал все мыслимые возможности и сказал: нет. И ядерная проба вскоре состоялась.

Почти тридцать лет спустя вновь возникла драматическая ситуация. На этот раз паника охватила молекулярных биологов. К тому времени они научились обращаться с генами и,  казалось, были готовы создать молекулярных монстров, среди которых могли возникнуть и чудища с губительными для человека свойствами.

Исследователи — на этот раз сами — забили тревогу. Их выступления, опубликованные в широкой печати, стали сенсацией. Слова «генная инженерия» приобрели популярность, вызывая у людей одновременно как чувство надежды, радости, веры в науку и всеобщий прогресс, так и чувство тревоги, страха, апокалипсических видений.

Тень от ядерных взрывов легла на генно-инженерные исследования. Общественность США была склонна толковать добровольный «мораторий» молекулярных биологов по-своему. Раз что-то запрещают, рассуждали неспециалисты, значит, все эти опыты крайне опасны. Подобные настроения подогревала пресса. Это ее вина, что некомпетентные, далекие от науки люди считали себя вправе в середине 70-х годов XX века (разгар генно-инженерного кризиса) обличать науку. Рядовые читатели, узнавая из газетных и журнальных статей с хлесткими заголовками об успехах и неудачах наук, не только критиковали ученых, отпускали в их адрес колкие, язвительные замечания и упреки, но и в самом прямом смысле вершили над наукой суд.

Науку судили и раньше. Вспомним хотя бы, какие страсти разгорелись после выхода в свет книг Чарльза Дарвина о происхождении и эволюции человека. В 1926 году в городе Дейтон (штат Теннеси, США) состоялся знаменитый «обезьяний процесс». Учитель Д. Скопе обвинялся в том, что он в школе излагал теорию Дарвина (ее преподавание в ряде южных штатов было запрещено). Высокий суд тогда отклонил требование защиты о вызове в качестве свидетелей ученых. Скопе же был приговорен к денежному штрафу. Было всякое. Однако раньше общественность (граждане, не имеющие специальной подготовки для понимания проблем современной науки) не вмешивалась непосредственно в дела ученых, не пыталась диктовать им, какие исследования надо вести, какие нет. Это случилось только в наши дни.

Видя нерешительность ученых, государственные и другие учреждения США стали обсуждать научные проблемы. Трансплантация генов стала поводом для дискуссий в конгрессе на заседаниях подкомиссии по здравоохранению. Дебаты шли под председательством сенатора Эдварда Кеннеди (брата убитого президента). В результате в Мичиганском университете строительство лаборатории, спроектированной специально для биоинженерных работ, было задержано. Подобные же вопросы обсуждались в главной прокуратуре Нью-Йорка и на многих других совещаниях — в штатах Индиана, Коннектикут, Калифорния... Не только финансирующие исследования органы, но и совсем далекие от науки люди включались в обсуждение генно-инженерных проблем.

Когда жителям Кембриджа (город ученых в штате Массачусетс, США, здесь находятся знаменитые Гарвардский университет и Массачусетский технологический институт) стали известны планы Гарвардского университета построить для молекулярных биологов лабораторию, то решение этого вопроса было отдано мэром города Альфредом Велуччи на откуп комиссии горожан. В нее вошли: медсестра-монахиня (она заведовала больницей), инженер-строитель, владелец небольшой компании, снабжающей горожан топливом, обеспеченная домохозяйка, два врача, философ и еще несколько представителей общественности. Им-то и вменялось определить степень безопасности предполагаемых научных изысканий в строящейся лаборатории. «Эксперты» заседали в Кембриджской городской больнице: дважды в неделю эта разнородная группа собиралась, чтобы поговорить о ДНК. Члены комиссии держались с учеными (их также приглашали на заседания) на «ты». И это было как раз то, чего ученые так опасались. В результате этих переговоров (дело происходило летом 1976 года) запланированные учеными эксперименты были сначала отложены на семь месяцев, а в феврале 1977 года городской совет и вовсе принял постановление (первое постановление такого рода в США), устанавливающее ограничения на исследования ДНК на всей территории Кембриджа.

Риск и возможная опасность ГМО и их научная проверка

В определенном смысле любой сорт выступает в качестве важнейшего для человечества рентообразующего фактора, как бы «озвучивающего» в цене величину и качество урожая благодаря лучшему использованию преимуществ местных почвенно-климатических и погодных условий, соответствию требованиям, а нередко и «прихотям» рынка, отзывчивости на применение техногенных факторов, применению новейших достижений науки и пр. В то же время при рыночной системе ценообразования и существующих методиках сортоиспытания далеко не всегда «улавливаются» преимущества нового сорта или гибрида, связанные с обеспечением экологической безопасности, т.е. их пригодностью к природоохранным, в том числе беспестицидным, технологиям возделывания, способностью усваивать труднодоступные элементы питания, противостоять кислотности и засолению почвы, обогащать ее биологическим азотом, улучшать физико-химическое и фитосанитарное состояние и тд. То обстоятельство, что в условиях рыночной экономики цены на сельскохозяйственную продукцию практически не учитывают средоохранные, ресурсосберегающие, почвоулучшающие и многие другие важные в экологическом плане признаки и свойства новых сортов, следует рассматривать в качестве хотя и временного, но весьма негативного явления.

Далеко не всегда в цене «озвучивается» и содержание в урожае биологически ценных, в том числе незаменимых, веществ. Между тем проблемы здоровья, питания и ресурсов всегда взаимосвязаны, а качество пищи и лекарства справедливо считаются двумя сторонами одной и той же медали под названием здоровье. С учетом решающего значения сорта в определении показателей «качества пищи», а следовательно, и «качества жизни» людей рентообразующим свойствам сорта, связанным с содержанием биологически и технологически ценных веществ (углеводов, аминокислот, жиров, витаминов, минеральных солей и др.), вкусом, эстетичностью, безопасностью для здоровья (отсутствие нитритов и нитрозаминов, тяжелых металлов, радионуклидов, микотоксинов и пр.), в процессе селекции и возделывания растений необходимо уделять особое внимание. Так, энергетическая и протеиновая ценность кормовых культур и соответствующих сортов должна формироваться в строгом соответствии с технологиями их возделывания, транспортировки, хранения и переработки, а также условиями содержания животных, более того, даже с учетом особенностей производства той или иной животноводческой продукции.

Например, важную роль приобретает создание сортов клевера с высокой растворимостью протеина (разброс данного показателя по сортам — от 20 до 70%), что позволило бы приблизить эту культуру по питательной ценности к люцерне. Поэтому в селекционном процессе, так же как и при нормировании кормов, важно учитывать не только валовое содержание, но и все большее число составляющих их биологически ценных веществ, определяющих в конечном счете питательную ценность кормов по обменной энергии и перевариваемому протеину. В этой связи должны быть разработаны соответствующие коэффициенты биоконверсии не только для каждой кормовой культуры и сорта, вида животного и технологии его содержания, но и для определенного типа фитоценоза (лугового или полевого) и т.д.

Как уже отмечалось выше, одной из возможностей уменьшения загрязнения генотоксическими агентами окружающей среды в связи с химизацией сельского хозяйства является широкое использование ГМ растений. Но оно требует объективного анализа рисков распространения ГМО. При рассмотрении проблемы возможного влияния трансгенных растений на окружающую среду в основном обсуждаются 3 аспекта:

1. Сконструированные гены могут быть переданы с пыльцой близкородственным диким видам, и их гибридное потомство приобретет новые привнесенные свойства или способность конкурировать с другими растениями.

2. Трансгенные сельскохозяйственные растения могут стать сорняками для сельского хозяйства и вытеснить произрастающие рядом другие растения.

3. Трансгенные растения могут стать прямой угрозой для человека, домашних и диких животных (например, из-за их токсичности или аллергенноcти).

К настоящему времени выполнены экспериментальные исследования этих возможностей и получены следующие данные.

Проведена оценка трансгенного рапса по способности к инвазии с целью определения: станут ли гербицидустойчивые растения более склонными к распространению в естественных условиях. При изучении демографических параметров трансгенного и обычного рапса, выращивавшихся в различных местах и различных климатических условиях, получены данные прямого сравнения 3 различных генетических линий — контроль, канамицинустойчивая линия и гербицидустойчивая линия — Баста.

Несмотря на значительные колебания по выживанию семян (при их хранении в земле), росту растений и семенной продуктивности, не обнаружены данные, указывающие, что генетическая инженерия по канамицин- и гербицидустойчивости усилила инвазивные свойства рапса. В случаях, когда наблюдали значительные различия, например, по выживанию семян, трансгенные растения оказались менее стойкими по сравнению с обычными.

При изучении частоты переноса гена bar (устойчивости к гербициду Баста) трансгенным рапсом были засеяны окружности диаметром 9 м среди гектара обычных растений. Для улучшения перекрестного опыления в поле стояли ульи с пчелами. Семена собирали на расстоянии 1,3, 12 и 47 м от этих окружностей и в потомстве определяли наличие гибридных растений.

Частота перекрестного опыления составила на расстоянии 1м — 1,4%, 3 м — 0,4%, 12 м — 0,02% и 47 м — 0,00034% (3 гибрида на миллион растений).

Определение частоты перекрестного опыления между трансгенным картофелем S.nigrum и S.dulcamara показало, что когда трансгенные и контрольные растения выращивали в соседних рядах, то частота скрещивания между ними составляла 24%. При увеличении расстояния до 10 м она составляла 0,017%, а при 20 м гибридных растений не обнаружено.

Еще одним аспектом влияния трансгенных растений на окружающую среду является получение трансгенных растений с лучшей способностью использовать минеральные соединения, что, кроме усиления роста, будет также препятствовать смыву химикатов в фунтовые воды и попаданию в источники водопотребления.

Ген CHL1 арабидопсиса контролирует транспорт нитратов и влияет на их поглощение из почвы. Изолирован гомологичный ему ген OsNTI. У трансгенных растений арабидопсиса с геном CHL1 поглощение азота усиливалось. ДНК CHL1 и OsNTI была слита с промоторами Act1 и Ubi1, и эти конструкции были интродуцированы в растения риса. Среди трансгенных растений, подвергнутых анализу, растение со множественными инсерциями Ubi1-CHL1 характеризовалось типичным для растений с повышенным поглощением нитратов соотношением корневой массы к надземной.

Ген глюкуронидазы (GUS), изолированный из Escherichia coli, — один из наиболее широко используемых репортерных генов у трансгенных растений. Этот ген чаще всего используется для изучения экспрессии генов при его подстановке под промоторы соответствующих генов. Выпуск на рынок трансгенных сортов сельскохозяйственных растений, имеющих GUS ген в качестве репортерного, требует оценки биобезопасности этого гена.

GUS-активность обнаружена у многих видов бактерий и поэтому представлена в организмах беспозвоночных и позвоночных. В организмах позвоночных GUS-активность обязана попаданию энтеробактерии Escherichia coli, обитающей в кишечном тракте, в почве и фунтовых водах, поэтому дополнительная активность GUS, добавленная в экосистему за счет трансгенных растений, не изменит существующую ситуацию вовсе или изменит незначительно.

Нет оснований полагать, что трансгенные культуры, экспрессирующие GUS ген, будут иметь какие-либо преимущества перед другими культурами и будут сорняками или такими преимуществами станут обладать сорняки, получившие этот ген за счет скрещивания с родственными видами сельскохозяйственных растений.

Так как глюкуронидаза встречается естественно в кишечном тракте человека и других позвоночных, ее наличие в пище или в кормах, полученных из трансгенных растений, не причинит им вреда. Поэтому наличие GUS гена в трансгенных растениях считается безопасным для человека, животных и окружающей среды.

Среди естественных компонентов биосферы значительное место занимают микроорганизмы. В силу высокой скорости эволюции микроорганизмы наиболее эффективно реагируют на изменение окружающей среды, так что исследование природных микробных сообществ позволяет наиболее оперативно оценить влияние изменений окружающей среды на биоразнообразие. Такие исследования приобретают в последние годы большое значение в связи с широким распространением генетически модифицированных микроорганизмов и возможным попаданием их в естественные микробные сообщества. Все эти воздействия могут создать проблемы, связанные с распространением чужеродных генетических конструкций в природных сообществах — так называемым горизонтальным переносом генов, что неминуемо приведет к существенному ускорению эволюции микробных сообществ, появлению новых форм с новыми генетическими признаками. Оценка устойчивости таких форм и содержащихся в них конструкций, а также последствий их появления в природе чрезвычайно важна для разработки стратегий последующего развития общества.

Для оценки возможного влияния генетически модифицированных растений на экосистемы почвы листья контрольных и трансгенных растений табака с геном ингибитора протеазы 1,7, обладающих инсектицидной активностью, помещали в почву. Содержание ингибитора протеазы через 5-7 дней составляло 0,05% от исходного количества и через 2 недели уже не детектировалось. Количество нематод в почве около остатков трансгенных растений было выше, чем около контрольных растений. Популяция Collembola, наоборот, была менее плотной возле остатков трансгенных растений, что указывает на наличие влияния остатков трансгенных растений на популяции нематод и Collembola.

Иногда высказываются опасения о возможном горизонтальном переносе генов от трансгенных растений в почвенные микроорганизмы. Определена частота возможной трансформации почвенной бактерии Acinetobacter calcoaceticus BD413 ДНК трансгенных растений при двух источниках ДНК растений, различных форм плазмидной ДНК с геном nptll. Трансформанты при использовании ДНК трансгенных растений не обнаружены, что предполагает частоту трансформацииниже 10-13 транс формантов на реципиент в оптимальных условиях. Однако в условиях почвы, при снижении концентрации ДНК, доступной бактериям, эта частота должна снизиться до 10-16. Учитывая ранее полученные данные об ограниченном времени сохранения хромосомной ДНК и невозможности определения детектируемой компетентности клеток A.calcoaceticus в почвенных условиях, полученные результаты приводят к выводу о неопределяемой частоте возможного поглощения растительной ДНК этим почвенным микроорганизмом в естественных условиях.

Изучена стабильность ДНК в листовом опаде трансгенных растений сахарной свеклы, устойчивых к ризомании, и возможность горизонтального переноса ДНК от растений к бактериям. Трансгенные растения несли NPTII и bar гены. Показана длительная сохранность растительной ДНК в почве.

Не обнаружен перенос специфичных конструкций трансгенной ДНК к микроорганизмам, изолированным из почвы.

Исследования показывают, что экологический риск при выращивании трансгенных растений можно сравнить с риском испытания новых селекционных сортов, полученных без применения биотехнологических методов. Все соединения, которые появляются в трансгенных растениях, уже существуют в природе. Все дело в скорости появления этих признаков у растений. То, что в природе произошло бы за тысячелетия, в экспериментах ученых происходит за годы.

Следует ли опасаться появления трансгенных растений, скажем, того же масличного рапса, устойчивого к гербицидам, потому, что он может скреститься с сурепкой и та станет устойчивой к этому гербициду? Определенный риск, конечно, существует, однако о появлении сорняков, устойчивых к гербицидам, известно уже давно и это не вызывало ранее никаких опасений. Просто подбирали другой гербицид, к которому данный сорняк был нестойким. Так же и в случае появления сорняков, устойчивых к какому-либо гербициду за счет скрещивания с трансгенными гербицидустойчивыми растениями, будут применены другие гербициды, которые и уничтожат эти сорняки, но оставят трансгенные растения, устойчивые к этому гербициду.

Одной из заманчивых возможностей ДНК-технологии является создание генетически модифицированных культурных растений, устойчивых к классу гербицидов сплошного действия. В таком случае, при применении гербицидов сплошного действия, на площади будут уничтожены все растения за исключением культуры, которая обладает генетически обусловленной устойчивостью к данному гербициду. Это было бы идеальным вариантом контроля вредоносности сорняков.

Существует ли опасность изменения трансгенных растений таким образом, что они станут токсичными для человека и животных? Даже теоретически трудно себе представить, что введение одного или несколько генов в высший эукариотический организм, геном которого состоит из десятков тысяч генов, так изменит его метаболизм, что это растение станет синтезировать какие-либо токсические соединения, не связанные с экспрессией введенного гена. Конечно, в каждом случае внесения нового гена получаемые трансгенные растения должны проходить тщательные испытания. При этом исследуют продукты метаболизма, кодируемые вносимым геном, и только после этого такие трансгенные растения изучают в полевых условиях.

И хотя обмен генов между сконструированными трансгенными растениями и родственными им культурными и дикими видами, по мнению большинства биотехнологов, не представляет угрозы для окружающей среды, предпринимаются попытки разработки системы, полностью препятствующей такому переносу генов. Одним из подходов к решению этой проблемы является создание стерильных мужских растений. Однако, несмотря на свою эффективность, в настоящее время он ограничен небольшим количеством видов сельскохозяйственных растений.

Другим подходом является внесение желаемых генов в хлоропластный геном. Для подавляющего большинства видов культурных растений хлоропласты наследуются строго по материнскому типу и, таким образом, трансгены не будут передаваться с пыльцой. Первые исследования в этом направлении были по материнской линии проведены в лаборатории П. Малиги и показали возможность внесения в хлоропластный геном маркерных генов.

Таким образом, можно суммировать имеющуюся информацию об опасностях, которые надо учитывать, в следующих пунктах.

1. Принцип создания векторов — имитация естественного процесса горизонтальной передачи наследственной информации, при которой вовлекаются эволюционно естественные пути обмена генетического материала; не исключен запуск событий, которые могут привести к изменениям межвидовых барьеров переноса генетического материала патогенов.

2. Интеграция нового материала в геном не может к настоящему времени рассматриваться как полностью прогнозируемый процесс — возможен запуск событий «инсерционного» мутагенеза.

3. У генетически модифицированных растений: а) модификации, связанные с увеличением устойчивости к гербицидам и паразитам, не учитывают традиционные проблемы коэволюции хозяина и паразита, возможность передачи генетического материала устойчивости сорнякам; б) модификации с целью получения фармакологических препаратов не учитывают неисследованные последствия для иммунной системы человека и животных изменений антигенного состава пищевых продуктов; в) не учитывается тот факт, что широкое использование генетически модифицированных растений неизбежно приводит к изменениям биоразнообразия в глобальном масштабе.

4. У генетически модифицированных животных: а) при их получении в целях увеличения продуктивности недостаточно исследованы последствия использования человеком продукции генетически модифицированных животных для эндокринной и иммунной систем человека, а также потенциальных источников распространения дестабилизирующих генетических элементов; б) при использовании ГМ животных для тиражирования геномов высокопродуктивных особей не исключено распространение скрытых генетических дефектов, а также изменение биоразнообразия внутри сельскохозяйственных пород; в) в терапевтических целях — недостаточно изучены последствия преодоления трансплантационного межвидового барьера, не исключены влияния на иммунную систему хозяина, а также возможно облегчение преодоления межвидового барьера патогенами.

В проблеме трансгеноза есть ряд нерешенных и теоретических проблем, например, одна из них — сайленсинг, «замолкание» встроенных генов. Это явление известно довольно давно, но конкретные механизмы, приводящие к выключению встроенных генов, пока не вполне ясны. Созданы специальные модели для изучения влияния числа копий генов. За контроль взята встройка одной копии гена глюкуронидазы в связке с геном-репортером по канамицинустойчивости, двух копий генов в прямой последовательности и тех же двух копий, но уже инвертированных друг к другу. Введение повторенных нуклеотидных последовательностей в виде прямых и особенно инвертированных повторов резко снижает уровень экспрессии гена канамицинустойчивости. Влияние числа копий или места встройки переносимых генов на их экспрессию, уровень активности или полное выключение — лишь один из механизмов явления сайленсинга, активно изучаемого в ряде лабораторий.

Другая важная проблема в процессе трансгеноза — возникновение мутаций как следствие встройки чужеродной ДНК (Т-ДНК инсерций). Собрана целая коллекция Т-ДНК индуцированных мутаций, характеризующихся, например, измененным строением цветка и мужской стерильностью. Мутантные фенотипы появляются с частотой до 5%. Установлено, что у большей части проанализированных растений мутантный фенотип наследуется сцепленно с признаком устойчивости к антибиотику канамицину, что свидетельствует об инсерционной природе мутационных событий в результате интеграции чужеродной ДНК в геном растений.

Очевидно, что для предупреждения вышеперечисленных событий, прежде всего, необходимо:

1. Наличие в генных конструкциях специальных последовательностей, позволяющих легко уничтожать клетки — их носители.

2. Использование традиционных приемов проверки на мутагенную активность всей продукции, связанной с ДНК-технологиями, с обязательным использованием тестов in vivo — лабораторных линий мышей и клеточных культур человека с учетом возможных кумулятивных эффектов со стрессирующими агентами.

3. Контроль изменения генофондов популяций трансгенных растений и животных, их репродуктивной изоляции от полученных традиционным путем.

4. Контроль изменения биотической компоненты агросистем, в которых разводятся трансгенные растения (микрофлора почвы, сорняки, насекомые и т.д.).

К сложностям использования генетически модифицированных растений, устойчивых к насекомым, относят следующие:

1. Возможность приобретения насекомыми толерантности к токсинам. Так, обнаружено, что у сельскохозяйственного вредителя — кукурузного мотылька (Ostrinia nubilalis) есть формы, устойчивые к Bt-токсину. Устойчивость контролируется аутосомным геном с неполным доминированием. Это может в скором будущем сделать использование Bt-модифицированных растений бессмысленным.

2. Противоречивость данных о токсичности для теплокровных животных и людей.

Исходя из этого, дальнейшее развитие использования ДНК-технологий в защите растений от насекомых будет осуществляться в направлении создания генетически модифицированных растений, несущих гены более эффективных и безопасных инсектицидов. Так, например, в последнее время развернуты работы по замене в генных конструкциях при получении трансгенных растений, устойчивых к насекомым, бактериального гена Bt-токсина на ген яичного белка авидина курицы. Принцип его действия основан на том, что авидин, накапливающийся в растениях, приводит к дефициту витамина биотина в тканях насекомых, что блокирует их онтогенез и приводит к их гибели. В то же время продукт гена авидина входит в пищу человека; его концентрации в трансгенных растениях, токсичные для насекомых, нетоксичны для человека, и даже при избыточном потреблении таких растений человеком возможные негативные эффекты могут быть скомпенсированы введением в пищу биотина.

В настоящее время в дискуссиях по проблемам генетической инженерии основной упор делается на критериях, показателях и методах оценки пищевой безопасности генетически модифицированных организмов и получаемых из них продуктов. Между тем главное внимание, на наш взгляд. должно быть уделено эволюционной, биологической и экологической безопасности ГМО. Вся история развития сельского хозяйства (да и цивилизации в целом) многократно доказывала пагубность подмены широкого научного базиса узким сиюминутным прагматизмом и всякого рода целесообразностью (экономической, политической, конъюнктурной и пр.). Санитарно-гигиеническая и медико-биологическая экспертизы играют хотя и важную, но только вспомогательную роль, когда речь идет об эволюции организмов, действительно управляемой волей человека. Кроме того, следует соотносить угрозу голода (которая вполне реальна) с действительными возможностями биоинженерии вообще и генетической инженерии в частности в обеспечении продовольственной безопасности населения в предстоящий период.

Принятые к настоящему времени рамочные фундаментальные принципы оценки риска получения и использования ГМ организмов заключаются в следующем:

1) оценка риска имеет научную основу, а не предположения,

2) она выполняется последовательно от одного варианта ГМО кдрутому,

3) оценка риска повторяется постоянно и пересматривается с появлением новой информации;

4) включается вся доступная информация.

Относительно последнего пункта, доступная информация не ограничивается научными фактами, поскольку персональное мнение и персональная предубежденность также должна учитываться в оценке риска. Ясно, что более объективная, квалифицированная информация обычно менее результативна в решении конкретных проблем использования ГМО, чем более популярная.

Результаты мониторинга за оборотом пищевой продукции из ГМО показали, что доля трансгенных культур, представленных на продовольственном рынке России, сравнительно невелика. В то же время ряд средств массовой информации публикует мифы о якобы тотальном наступлении на российские прилавки пищи из трансгенных источников Так, одна из центральных газет опубликовала список некоторых продуктов, при производстве которых якобы использовались ГМО (по данным Гринпис). Институтом питания России были сделаны контрольные закупки пищевых продуктов из данного списка — всего 50 образцов. Исследования, проведенные в двух различных лабораториях независимо друг от друга, показали отсутствие ГМИ во всех исследованных продуктах.

Культивирование ГМО в крупных природных географических комплексах, где все элементы находятся в сложном взаимодействии и образуют единую систему, чревато обострением экологических проблем, уже связанных с монокультурным сельским хозяйством, но, к сожалению, для обеспечения выживания человечества другого выхода пока нет.

Опасность ГМО и опасность применения пестицидов

Для обсуждения значения и опасностей использования генетически модифицированных культурных растений в сельском хозяйстве необходимо точно представлять себе, что реально опаснее — генетически модифицированные организмы, или современные приемы использования химических веществ (пестицидов) для защиты от болезней и вредителей.

Как известно, термин «пестициды» состоит из латинских слов — pestis (зараза) и caedo (убиваю). Их производство стало выгодным бизнесом для агропромышленных корпораций. В 1998 г. продажа пестицидов увеличилась на 5% и достигла 31 млрд долл. Лидером их поставок на мировой рынок была компания «Новартнс» (Швейцария), которая довела объем продаж химикатов до 4 млрд долларов. Главные экспортеры пестицидов сегодня — Франция, Германия, США, Великобритания и Швейцария — получают весомую часть своих прибылей за счет торговли пестицидами.

Дорогостоящие рекламные кампании, замалчивание успехов биологических методов защиты растений, вообще весь арсенал современных методов обработки общественного мнения используется мощными химическими концернами для удержания позиций на рынке пестицидов. Вместе с тем анализ результатов многолетнего применения богатейшего арсенала пестицидов говорит о том, что попытки решить проблему повышения продуктивности сельского хозяйства за счет химизации практически исчерпаны и накопление пестицидов в почвах, продукции сельского хозяйства, в организмах домашних и диких животных и человека уже привело к ряду неприятных последствий. Одно из них — уже упоминавшееся повышение устойчивости насекомых (объектов применения инсектицидов) к применяемым ядам, что ведет к увеличению доз при обработке полей и введению все более токсичных ядохимикатов. Это уже привело к тому, что сельское хозяйство стало одним из наиболее опасных для здоровья видов деятельности. Так, по числу мутагенов (а именно пестициды являются основными мутагенами в сельском хозяйстве) оно занимает второе место после отходов промышленности, опережая по этому показателю бытовую химию, медицину, транспорт, и «поставляет» людям 21% всех химических мутагенов. Мутагенное и канцерогенное действие пестицидов — не единственная опасность для здоровья людей, связанная с ними.

Специальными   исследованиями  показано,  что  пестициды вызывают многочисленные нарушения деятельности нервной системы, органов чувств, системы пищеварения, генеративных функций. Расчеты показывают (Таиров и др., 1986), что в США, где были особенно популярны пестициды, с их действием могут быть связаны от 10 до 18% смертей. Анализ эффективности пестицидов и прогноз результатов перехода к биологическим методам защиты растений позволяют рассчитывать на постепенное избавление от опасного насыщения пестицидами экосистем, включая агросистемы.

Поскольку все применяемые на практике способы обработки пестицидами сельскохозяйственных культур связаны с распылением соответствующих растворов или порошков в воздухе, не оседающая на поверхность часть препарата образует более или менее устойчивые аэрозоли, которые разносятся даже слабым ветром на значительные расстояния.

Дополнительное, хотя и не такое большое количество пестицидов, в частности инсектицидов, добавляют в воздушную среду обработки очагов трансмиссивных заболеваний против кровососущих насекомых-переносчиков. Воздушная среда находится в контакте и непрерывном взаимодействии с водами, почвами, растительностью. Это приводит к распространению пестицидов практически во всех средах на Земле, и хотя их концентрация максимальна в зонах непосредственного применения, на нашей планете уже нет места, абсолютно свободного от присутствия хотя бы следовых количеств этих ядов (Розанов, 2001).

Многие загрязнители обладают одновременно канцерогенным (вызывающим раковые заболевания) и мутагенным (вызывающим повышение частоты мутаций, включая нарушения, ведущие к уродствам) свойствами, поскольку механизм их действия связан с нарушениями структуры ДНК или клеточных механизмов реализации генетической информации. Такими свойствами обладают как радиоактивные загрязнения, так и многие химические вещества органической природы — продукты неполного сгорания топлива, ядохимикаты, применяемые для защиты растений в сельском хозяйстве, многие промежуточные продукты органического синтеза, частично теряемые в производственных процессах. Опосредованное влияние, то есть воздействие через почву, растительность и воду, связано с тем, что те же вещества попадают в организм животных и человека не только через дыхательные пути, но и с пищей и водой. При этом область их воздействия может существенно расширяться. Например, ядохимикаты, сохранившиеся в овощах и фруктах в опасных количествах, воздействуют не только на население сельских районов, но и на жителей городов, питающихся этой продукцией.

Опасность бесконтрольного применения пестицидов возрастает еще и от того, что продукты их метаболизма в почве иногда оказываются более токсичными, чем сами использованные на полях препараты.

Несмотря на «зеленую революцию», развивающиеся страны в ходе ее проведения не смогли создать самодостаточные аграрные экономики. Сельскохозяйственные реформы под эгидой МВФ сделали страны третьего мира заложниками глобального продовольственного рынка, на котором всего 10 корпораций контролируют все аспекты сельскохозяйственного производства в мире. На долю четырех из них приходится 90% мирового экспорта кукурузы, пшеницы, табака, чая и ананасов. По прогнозам МВТ, многие страны Азии и Африки вынуждены будут почти удвоить импорт зерновых до 2020 г. Поэтому можно ожидать, что создание генетически модифицированных растений могло бы способствовать решению таких вопросов, как повышение урожая без дополнительного ущерба для экологии. Однако не все страны готовы довериться западным технологиям.

Индия, например, проводит свои собственные исследования и оценки. Широкое использование минеральных удобрений способствовало повышению урожайности зерновых, но вызвало нарушение глобального азотного баланса. Дальнейшее наращивание использования пестицидов создает огромную угрозу здоровью миллионов потребителей и хлеборобов.

По оценке ВОЗ, ежегодно 3 млн человек отравляются пестицидами и более 200 тыс. умирают при этом; до 25 млн сельскохозяйственных рабочих подвергаются воздействию химических веществ с риском для жизни.

Первым вопросом при оценке потенциальной опасности генетически модифицированных организмов является биологический смысл представлений о том, что такое — генетически модифицированные организмы и в чем может быть их опасность.

Противники использования генетически модифицированных организмов подчеркивают следующее.

Отмечается, что все высшие организмы без исключения содержат генетический материал, полученный ими благодаря горизонтальному переносу, то есть от чужеродных для них организмов. Таким образом, проблема генетически модифицированных организмов заключается в том, что они содержат экзотический для себя генетический материал, который, кроме этого, может служить вектором переноса такой экзотической ДНК к другим представителям того же вида.

Например, известно, что агробактерии действительно распространяются по представителям различных таксонов растений и могут встраивать свои собственные гены в геномы хозяев, однако в естественных условиях они не переносят экзотических гены третьих видов. Генетическая структура генетически модифицированных организмов характеризуется повышенной нестабильностью, поскольку, естественно, легкая встройка чужеродного материала не исключает ни инсерционного мутагенеза, ни легкого выщепления свежевстроенного материала. Сама встройка, поскольку количество копий и место интеграции контролировать достаточно трудно, может активировать различные мобильные элементы генома самого хозяина, менять экспрессию различных его генов. Кроме того, встройка новых генов может создавать качественно новые межгенные взаимодействия, часть которых может неожиданным, непрогнозируемым образом реализоваться в фенотипе, приспособленности и плодовитости генетически модифицированных организмов.

Таким образом, можно выделить пять основных направления опасений в использовании ГМО для окружающей среды:

• горизонтальный генный поток, благодаря чему будут генетически модифицированы все представители сельскохозяйственного вида, в том числе и представители предковых естественных рас в центрах происхождения доместицированных видов растений, и, таким образом, исходный предковый генофонд будет исчезать;

• появление новых, незапланированных генных конструкций, новых вирусов, суперсорняков и супервекторов для переноса новых генетических элементов, благодаря тому, что фактически невозможно спланировать те рекомбинационные процессы, в которые вступает генная конструкция, попавшая в геном хозяина;

• индукция геномной нестабильности в геномах-мишенях генетической модификации, что может в последствии привести к сужению биоразнообразия;

• изменение бактериальной микрофлоры человека в сторону повышения ее устойчивости к антибиотикам, поскольку генные конструкции часто несут гены устойчивости к антибиотикам;

• недостаточно исследованными остаются аллергенные свойства экзотических белков, попадающих в пищу для человека и для иммунной системы человечества вообще.

Перечисленные возможные опасности реально существуют и нуждаются в специальных исследованиях, которые и проводятся в отдельных научных подразделениях, в основном, Канады, Англии и Америки.

Защитники генетически модифицированных организмов акцентируют свое внимание на следующих позициях.

Они полагают, что к потенциальной опасности распространения и использования генетически модифицированных организмов подходят на основании «двойного стандарта», что легко можно увидеть из двух сопоставлений, представленных ниже.

Влияние наличия аллергенных эффектов экзотических белков генных конструкций на иммунную систему человека, так же как и появление устойчивости бактериальной компоненты человека к антибиотикам, нельзя рассматривать отдельно, как самостоятельную проблему, а только по сравнению с такими же эффектами тех химических веществ, инсектицидов, пестицидов, гербицидов, которые они замещают. То есть пищевую опасность эндотоксина Bacillus thuringiensis (Bt), наиболее распространенного элемента генных конструкций в защите трансгенных растений от насекомых, нужно сравнивать с пищевой опасностью того же эндотоксина, который попадает в пищу при его использовании в качестве химического средства защиты растений, с учетом объемов его внесения в целые агросистемы. Что, в общем, никогда не рассматривается противниками ГМО, хотя сам метод получения ГМО вырос из объективной необходимости снижения химизации сельского хозяйства и медицины, достигшей катастрофических размеров в сравнении с возможностью экологических систем от нее освобождаться.

Наличие либо отсутствие генетического потока, связанного с ГМО, вероятность появления суперсорняков, новых вирусов не может являться предметом общих рассуждений, а должно подкрепляться прямыми экспериментальными данными. К настоящему времени ни в одном из проведенных специальных исследований экспериментальные результаты, доказывающие обоснованность таких подозрений, не получены. Кроме того, возможность генного потока может быть исключена путем создания стерильных ГМО и специально разработанных методов гибели растений после определенной стадии развития. Кроме того, если оказывается, что данная форма ГМО действительно несет высокий риск генного потока по каким-то другим причинам — ее просто нужно исключать из воспроизводства.

Защитники ГМО полагают, что вопросы использования ГМО и их опасности должны перестать представлять собой абстрактную дискуссию, а перейти к выбору конкретной стратегии использования ГМО с наличием специальных приемов для предупреждения их нежелательных эффектов, специально разработанных не на все случаи жизни, а конкретно, для каждого ГМ сорта отдельно. При этом необходим «эквивалентный» подход к оценке опасности ГМ растений, при котором учитывается опасность их неиспользования — применения традиционных афотехнологий, поскольку хорошо известно, что химизация агросистем приводит к глубоким экологическим изменениям и способствуют появлению как новых суперсорняков, так и экспансии новых вирусов, дестабилизации генофондов сельскохозяйственных и диких видов.

И только глубокие исследования глобальных изменений биосферы, связанных с деятельностью человека в 19-20 веках, связанных с техногенной революцией, могут служить тем контролем, по отношению к которому нужно оценивать возможную угрозу ГМО для биоразнообразия планеты.

Темпы распространения ГМО

Несмотря на отсутствие компромисса между двумя этими позициями, в развивающихся странах площади, занятые ГМО, выросли в 2000 году на 51%, от 7.1 млн га в 1999 до 10.7 млн га, что сопровождалось только 2% ростом в индустриальных странах, от 32.8 млн га в 1999 до 33.5 млн га в 2000.

Первые ГМ растения появились на рынке в 1996 г. В 2004 г. ГМ растениями было засеяно почти 4% пахотной земли в мире: общая площадь ГМ культур составила 81 млн га. По сравнению с 2003 г., это увеличение на 20% или 13.3 млн га. Впервые прирост в развивающихся странах (7.2 млн га) был больше, чем в промышленно развитых странах (6.1 млн га) — табл. 2.



Таблица 2. Скорость роста площадей в мире, занятых генетически модифицированными растениями

В 2004 г ГМО выращивали 8.25 млн фермеров в 17 странах (на 1.25 млн человек больше, чем в 2003 г.). 90% — это фермеры развивающихся стран. В 14 странах площади ГМО составляют более 50 000 га. В 2003 г. таких стран было 10.

Больше всего ГМО выращивается в следующих странах (табл. 3).

Таблица 3. Страны-лидеры в выращивании генетически модифицированных растений



Испания — единственная европейская страна, которая имеет 58 000 га Bt кукурузы. По сравнению с 2003 г., это увеличение на 80%;

Германия — небольшая площадь Bt кукурузы;

Румыния — 100 000 га ГМ сои.

5 развивающихся стран — Китай, Индия. Аргентина, Бразилия, ЮАР — оказывают большое влияние на другие регионы.

В 2004 г ЕС — получено разрешение на импорт в ЕС 2х линий ГМ кукурузы: ВТ 11 (Syngenta) и NK 603 (Monsanto).

Прирост площадей, занятых ГМ растениями в разных странах за 2004 г представлен в табл. 4.

В 2004 г наблюдалось следующее распределение ГМ растений:

По культурам:

1. Соя — 48.4 млн га (60% общей ГМ площади)

2. Кукуруза — 19.3 млн га (23% общей ГМ площади)

3. Хлопчатник — 9.0 млн га (11% общей ГМ площади)

4. Рапс — 4.3 млн га (6% общей ГМ площади)

По признаку:

— Гербицид-устойчивые ГМО — 58.6 млн га (72%)

— Bt-культуры —15.6 млн га (19%)

— Устойчивые к гербициду + вредителям — 6.8 млн га (9%)

Преобладающими культурами были соя — 48.4 млн га (60% всех ГМО) в 9 странах, и Bt кукуруза — 11.2 млн га (14% всех ГМО). В 2004 г. 5% всей площади с/х культур в мире (1.5 млрд га) было занято ГМ растениями. В период 1996 - 2004 доминируют устойчивые к гербицидам ГМО.

Таблица 4. Прирост площадей, занятых ГМ растениями в разных

странах в 2004 г



Из этой сводки становится очевидным стремительность распространение ГМ растений по всему миру. Причины такой высокой скорости распространения ГМ растений ясны из фактов, приведенных в докладе Национального центра пищевой и сельскохозяйственной политики США (The National Center for Food and Agricultural Policy (NCFAP), в котором подчеркивается, что использование ГМ растений является существенной частью современной стратегии фермеров, благодаря которой возможно увеличение урожая и уменьшение его себестоимости. Sujatha Sankula, директор биотехнологических исследований в NCFAP, в своем докладе отметил, что по сравнению с 2001 г., в 2004 г. произошло увеличение урожайности на 41%. Стоимость продукции уменьшилась на 25%, увеличение прибыли составило 27%. Использование пестицидов уменьшилось на 2%. В 2004 г. прибыль от ГМ составила 1900 миллионов долларов, прирост урожая — 5300 миллионов фунтов, уменьшение использования пестицидов — 46.4 миллионов тонн.

Такой прирост наблюдался у фермеров всех 42-х штатов, где применяли ГМ сорта. Наибольшая прибыль, в мерах увеличения конечной продукции и уменьшения использования пестицидов, была в Айове, затем в Иллинойсе и Миннесоте. Согласно Sankula, особую часть прибыли составляет уменьшение негативного влияния на окружающую среду при использовании ГМО, что связано со снижением использования пестицидов, уменьшением эрозии почв, затрат воды, использования сельскохозяйственной техники. Sankula констатирует факт, что современные биотехнологии увеличивают общую эффективность использования хлопка на 300%, сои — на 45% и кукурузы — на 14%. В своем докладе Sankula подчеркивает, что «Увеличение использования ГМ увеличивает прибыль. Коммерческие  преимущества для фермеров при использовании ГМ сортов являются ключевым фактором для их распространения».

Исследователь Института Hoover, mr. Henry Miller, утверждает, что генетически модифицированные растения являются практикой, которая будет использоваться веками. В своей рецензии на книгу с остроумным названием «Мендель в кухне» (Mendel in the Kitchen, авторы Nina Federoff и Nancy Marie Brown), он отмечает, что все зерновые, фрукты и овощи, из которых складывается наша еда, за исключением дикой вишни и грибов, являются генетически модифицированными по отношению к своему «естественному», исходному состоянию. «Картофель, томаты, овес, рис и кукуруза, например, происходят от растений, созданных в последние полвека при очень широкой перекрестной гибридизации между сортами, которая превышает естественные границы такой гибридизации. «В этом смысле вся сельскохозяйственная практика последних 10 тысяч лет была неестественной». Генетические модификации путем разрезания и встройки генов — это только последняя, очень небольшая глава в веках последовательного генетического улучшения сельскохозяйственных видов растений. И это — только усиление предеуществовавших технологий. Н. Miller критикует истерию вокруг ГМ сортов, в которой больше эмоций и страхов и почти совсем нет фактов. Он полагает, что главный источник такой истерии обусловлен ошибочными представлениями о том, что переносимые гены не регулируются нормальным путем, не поддаются тестированию и являются вредными. Он указывает на то, что такие представления не соответствуют реальности, и книга «Мендель в кухне» подробно излагает долгий путь решения этих проблем. Он полагает, что распространение ГМО уменьшит использование пестицидов, увеличит устойчивость растений к вирусным инфекциям, к засухе и избытку воды.

В обнародованном 23 июня 2005 г отчете «Современная пищевая биотехнология, здоровье и развитие: доказательное исследование» (Modern food biotechnology, human health and development: an evidence-based study) Всемирной организации здравоохранения - ВОЗ (World Health Organization — WHO) рассмотрены потенциальные выгоды и риски, связанные с применением ГМО в производстве продовольствия, и подчеркивается, что сложившаяся практика тщательной оценки безопасности ГМО перед выдачей разрешений на их выращивание и продажу позволяет исключить риски для здоровья человека и состояния окружающей среды.

Выгоды же очевидны: применение ГМО ведет к росту урожайности, уменьшению потерь продукции, повышает эффективность производства, улучшает качество и разнообразие пищевых продуктов, что, в свою очередь, способствует улучшению здоровья потребителей и росту их жизненного уровня. Кроме того, эксперты прогнозируют и ряд важных «сопутствующих эффектов», например, сокращение использования удобрений и рост благосостояния фермеров, особенно в развивающихся странах.

В то же время, раз некоторые гены, используемые при создании ГМ сортов, ранее отсутствовали в сельскохозяйственных растениях, эксперты рекомендуют продолжать контроль потенциальных влияний ГМ продуктов на здоровье человека. Такой контроль должен вестись даже после их вывода на рынок, дабы своевременно выявить любые возможные неблагоприятные эффекты.

В пресс-релизе WHO, выпущенном по случаю выхода отчета, отмечено, что, поскольку оценки риска для здоровья и воздействия на окружающую среду обязательны для всех ГМ растений, разрешенных к применению, ГМ продукты исследованы полнее, чем обычные. И до сих пор не известно ни одного случая, когда потребление ГМ пищи вызвало бы какой-нибудь отрицательный эффект.

В будущем эксперты рекомендуют расширить критерии оценки ГМ пищи, включив в них социальные, культурные и этические аспекты. Пока такие оценки сосредоточены, прежде всего, на агрономических показателях и возможном влиянии на здоровье потребителей. Потребность в более широких взглядах на проблему, по мнению экспертов международных организаций, вызвана, в частности, тем, что в 2002 г. ряд африканских государств создали скандальный прецедент, отказавшись от гуманитарной помощи развитых стран якобы из-за того, что в поставляемом продовольствии могла оказаться ГМ продукция. В результате такого отказа большое количество жителей этих стран умерли от голода.

«Пищевые продукты с ГМ источниками необходимо исследовать с разных точек зрения, включая социальный и этический аспекты, в дополнение к их возможному влиянию на здоровье и состояние окружающей среды. Если мы поможем государствам — членам ВОЗ сделать это на национальном уровне, мы сможем избежать возникновения 'генетических барьеров' между странами, которые разрешают и не разрешают ГМ культуры», считает доктор Иорген Шлундт, директор Департамента безопасности продовольствия ВОЗ.

Все эти факторы влияют на отношение общества к ГМ пище. В той или иной мере они учтены в 15 международных юридически закрепленных соглашениях и сводах правил, регламентирующих разные аспекты применения ГМО (впрочем, имеющих характер рекомендаций, совершенно не обязательных к исполнению).

Оценки риска распространения ГМО

Оценка рисков, связанных с выращиванием и применением ГМ растений, во всех странах, где она проводится, основана на сходных методах в соответствии с рекомендациями WHO (Codex Alimentarius Commission. Principles for the risk analysis of foods derived from modern biotechnology. FAO/WHO, Rome, 2003), Картахенским протоколом и другими международными документами и постоянно совершенствуется. Тщательное изучение свидетельствует об отсутствии каких-либо негативных последствий для человека и природы, связанных с ГМО, прошедшими испытания и разрешенными к применению.

Несмотря на это, далеко не все потребители верят подобным заключениям. Исследования  общественного   мнения   показывают,  что потребители сравнительно легко соглашаются с аргументами как «за», так и «против» ГМО и в целом не требуют от них «нулевого риска», понимая, что в природе его просто не существует. Например, во многом критическое отношение к ГМ пище удивительным образом уживается с вполне позитивным в целом отношением к использованию биотехнологии в медицине (генная терапия, лекарства и вакцины, полученные методами генной инженерии), промышленности, добыче полезных ископаемых и тд. Поэтому понимание подлинной выгоды для общества применений ГМО в разных областях нашей жизни так важно для формирования позитивного отношения потребителей к новой технологии.

Важная часть дебатов о ГМО — вопросы интеллектуальной собственности. Равный доступ к достижениям биотехнологии, справедливое распределение на глобальном уровне доходов от применения биотехнологии в сельском хозяйстве, недопущение монополизации — все эти проблемы имеют немалое значение для судеб ГМО и других результатов генной инженерии. Впрочем, не меньшее значение для выбора стратегии развития в той или иной стране имеют и такие факторы, как стремительная «химизация» сельского хозяйства, потенциальное и реальное снижение биоразнообразия сельскохозяйственных культур, зависимость фермеров от производителей семян. Противоречивые оценки и невразумительное обоснование выгод, рисков и ограничений, связанных с ГМО, усиливают недоверие к ним.

Международные организации и предприняли данное исследование, в основном, чтобы помочь всем странам получить всестороннее представление о ГМ продуктах.

«Понять, наконец, что такое ГМО, выгодно для народов всех стран, а применение биотехнологии в сельском хозяйстве позволит улучшить снабжение продовольствием и здоровье людей», — убежден доктор Шлуидт.

Принятые к настоящему времени рамочные фундаментальные принципы оценки риска получения и использования ГМО заключаются в следующем:

1) оценка риска имеет научную основу, а не предположения,

2) она выполняется последовательно от одного варианта ГМО кдрутому,

3) оценка риска повторяется постоянно и пересматривается с появлением новой информации;

4) включается вся доступная информация.

Доступная информация не ограничивается научными фактами, поскольку персональное мнение и персональная предубежденность также должна учитываться    в    оценке    риска.    Ясно,    что   более объективная, квалифицированная информация обычно менее результативна в решении конкретных проблем использования ГМО, чем более популярная.

Однако в комплексной проблеме экологии растений множество параметров не доступны для количественной оценки, и они должны быть определены хотя бы как качественные параметры. Это особенно очевидно в случае оценки опасности использования ГМО для конкретных экосистем. Другой момент — опасность использования ГМО в широком экологическом смысле требует четкого сравнительного анализа.

Кроме того, необходимо подчеркнуть, что до сих пор нет четкого определения, что такое опасность. В отношении ГМО опасность или риск обычно оценивается возможностью перенесения генной конструкции (генный поток) в другие виды (микробиоту, насекомые и т.д.) или путем переопыления с другими близкородственными видами (дикие расы, сорняки) или трансгенных семян в фунт и примесь их в последующих посевах той же нетрансгенной культуры (перенесение вместе с семенами). Эти процессы поддаются как количественным измерениям, так и изменениям, путем получения, в частности, стерильных трансгенных сортов.

Однако сами доместицированные виды без ГМО тоже формируют генные потоки к сорнякам и к другим видам. Так что оценка первого может выполняться только по отношению к исследованиям вторых. Отсутствие глубоких исследований последних приводит к ошибочным представлениям об опасности генного потока от ГМО для, например, сохранения биоразнообразия. Более того, такая опасность существовала во все тысячелетия использования доместицированных форм среди диких, с этим и нужно сравнивать генный поток.

Например, модифицированная кукуруза, которая проявляет те же самые характеристики, что и ее немодифицированные варианты, в отношении количества семян, их репродуктивной функции, должна рассматриваться как неизмененная форма в отношении опасности возникновения нового генного потока. Если кому-то кажется, что полевые исследования мало чувствительны — необходимо проводить лабораторные, с повышенной точностью. Однако сама направленность на обязательное выявление негативных эффектов как самостоятельную задачу может не привести к увеличению безопасности ГМО, а сделать их производство бессмысленным. Очевидно, что должен быть баланс, при котором научные обсуждения должны увеличивать качество новых тест-систем ГМО и приносить новое знание, а не блокировать их развитие вообще. Поскольку в глобальном масштабе совершенно не ясно, как можно добиться увеличения пищевой продукции, снижая химизацию сельского хозяйства и добиваясь очищения от средств химической защиты растений агросистем, без чего невозможно дальнейшее устойчивое развитие человечества. Научные исследования генетически модифицированных растений, которые экспрессируют продукты генов с пестицидным эффектом (устойчивостью к насекомым или к болезням) выполняются в США экспертами BPPD, которые анализируют характеристики продукции (последовательность трансгена и его функции, анализ их локализации в геномах растений, генетическая стабильность/наследуемость, последовательность белков и их функция, уровень экспрессии, сравнение последовательностей с базой данных токсинов и аллергенов, белковой термостабильности), острая токсичность для млекопитающих (оральные нагрузки для крыс), острые токсические нагрузки для птиц, эффекты для видов мишеней действия (рыбы, водные и почвенные беспозвоночные и тд.), потенциальный генный поток, его судьба в разных средах и потенциал к перенесению в семенах. Обзор таких данных можно найти на веб-сайте OSTP (Office of Science and Technology Policy).

В целях исследования потенциального потока генов от ГМО, специальное подразделение EPA/BPPD рассматривает как модельные объекты сорта трех видов, созданных для экспрессии генных продуктов с пестицидными эффектами (картофель, кукуруза, хлопок). Поскольку картофель и хлопок занимает большие территории в США, и лоток генов к ним от ГМО необходимо исключать, именно ГМО этих видов исследуются наиболее подробно.Накопленные данные по этому вопросу представлены на веб-сайте ЕРА.

В Канаде имеются разработанные принципы предупреждения неблагоприятных эффектов ГМО на окружающую среду, изложенные в специальном докладе «Elements of Precaution: Recommendation for the Regulation of Food Biotechnotoov in Canada» (January 2001). В общем, если суммировать имеющуюся информацию, то самыми важными обстоятельствами являются следующие.

Несмотря на развивающиеся приемы и методы так называемого «биологического», «натурального», естественного» земледелия остается очевидным, что обеспечение продуктами питания растущего населения земли, уменьшение количества голодающих и гибнущих от голода в современном человечестве этим путем невозможно. Естественное земледелие по своему определению достижимо только на очень ограниченных территориях, свободных от техногенного загрязнения и антропогенного давления, требует существенных экономических и человеческих затрат. Поэтому поиск иного пути выхода на устойчивое развитие сельского хозяйства в глобальном масштабе неизбежен.

Очевидно, что принципиальным моментом стратегии такого устойчивого развития является установка на уменьшение химизации сельского хозяйства в целях восстановления и сохранения агро- и экосистем. В настоящее время сочетание сохранения продуктивности сельского хозяйства и уменьшения его химизации возможно только с использованием ГМ растении. Для предупреждения негативных эффектов интеграции ГМО в экосистемы необходима разработка батареи тест-систем проверки их наличия для каждого конкретного типа ГМО и распространения таких тест-систем во все страны для обеспечения доступности такой проверки для любого без исключения заинтересованного лица. Это позволит перевести социальную озабоченность от возможных негативных эффектов ГМО к их рациональному использованию.

В общем, основные направления оценки биобезопасности ГМО можно свести к двум: пищевой и экологической.

Пищевая безопасность. Принцип эквивалентности

Для контроля пищевой безопасности разработаны следующие подходы. Организация экономического сотрудничества и развития (ОЭСР) разработала концепцию «существенной эквивалентности» и рекомендовала ее как наиболее практичный подход к оценке безопасности пищевых продуктов, полученных с использованием ГМ технологий.

Отчет специальной комиссии европейского отделения МИНЖ по новым продуктам об оценке безопасности новых продуктов (1996 год) определил существенную эквивалентность как «биохимическую идентичность в пределах природного разнообразия традиционных экземпляров, используемых в коммерческих целях — для одного биохимически определенного пищевого продукта или ингредиента; и как идентичность с традиционным пищевым продуктом или ингредиентом по составу, пищевой ценности, метаболизму, целевому использованию и уровню нежелательных веществ, находящимся в них, в пределах известного и измеримого природного разнообразия традиционных экземпляров, используемых в коммерческих целях — для комплекса пищевых продуктов или ингредиентов».

Научный комитет по пищевым продуктам (НКПП), являющийся консультативным комитетом ЕС, отметил разницу между термином «эквивалентность» (юридический термин, применяемый к естественным аналитическим свойствам пищевого продукта или пищевого ингредиента, и который может указывать на необходимость маркировки относительно происхождения и состава) и концепцией «существенной эквивалентности» как сравнительным подходом к оценке безопасности. Таким образом, НКПП согласился с ВОЗ, ОАО и ОЭСР относительно толкования значения и важности «существенной эквивалентности». НКПП также отметил, что существенно эквивалентные пищевые продукты могут содержать модифицированную ДНК, но по другим характеристикам быть идентичными их традиционным дубликатам. Разработанный подход к оценке пищевой безопасности представлен на схеме 1.

Схема 1. СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ДЛЯ ОПРЕДЕЛЕНИЯ СУЩЕСТВЕННОЙ ЭКВИВАЛЕНТНОСТИ С РОДИТЕЛЕМ/ ХОЗЯИНОМ ИЛИ ТРАДИЦИОННЫМ ЭКЗЕМПЛЯРОМ ПИЩЕВОГО ПРОДУКТА

Организмы (растения, микроорганизмы)

— морфология — таксономическая характеристика — размер — физиология — урожайность — наличие плазмид

— устойчивость к болезням и т.д. — устойчивость к антибиотикам — инфекционность, — круг хозяев — способность к колонизации пищеварительного тракта, (или других тканей).

Состав (для ГМО или пищевого продукта)

— основные пищевые элементы** — основные вторичные метаболиты, включая токсины*** — основные аллергены

* Данные взяты из совместного доклада совещаний ФАО/ВОЗ «Биотехнология и безопасность пищевых продуктов» 1996 и 2000 годов.

** Пищевые элементы: вещества в определенном пищевом продукте, которые, как считается, играют роль в режиме питания. Включают основные компоненты (по объему), например, белки, жиры, углеводы; и неосновные компоненты, например, витамины, минералы.

*** Токсины: токсикологически важные компоненты, естественно присутствующие в видах, которые вследствие их токсичного потенциала, или уровня токсичности, могут быть вредными для здоровья.

Сравнительный подход «существенной эквивалентности» привел к формированию трех категорий пищевых продуктов, полученных с использованием ГМ организмов, от которых зависит уровень необходимой оценки безопасности:

Категория 1: новый пищевой продукт существенно эквивалентен уже имеющимся пищевым продуктам. Продукты, которые существенно эквивалентны существующему двойнику, рассматриваются «как такие же безопасные, как» двойник и не требуют проведения дальнейшей оценки безопасности. Такие пищевые продукты считаются настолько же безопасными, как их двойники, полученные традиционными методами.

Категория 2: новый пищевой продукт существенно эквивалентен своему традиционному двойнику, кроме четко определенных отличий: оценка безопасности должна быть сосредоточена на таких отличиях.

Категория 3: новый пищевой продукт не может быть признан как существенно эквивалентный или из-за отличий, которые не могут быть определены, или из-за отсутствия соответствующего двойника, с которым его можно сравнить. В таком случае необходимо проведение дальнейшей оценки на предмет питательной ценности и безопасности пищевого продукта.

Большинство пищевых продуктов, полученных из ГМО, будут относиться к 1 или 2 категориям. Вероятно, в будущем некоторые ГМ культуры и полученные из них пищевые продукты не будут существенно эквивалентны вследствие преднамеренного увеличения пищевой ценности (например, при добавлении витаминов).

В соответствии с данными, полученными в виде части теста на эквивалентность, могут быть определены и оценены требования по тестированию на безопасность (токсины, вредные элементы, аллергены), пищевую ценность и диетическую значимость введения пищевого продукта в рацион. Если для тщательной оценки недостаточно доступной информации, может применяться токсикологический скрининг, включающий исследования путем кормления животных. Это тот случай, при котором предполагается, что пищевой продукт будет потребляться как существенная часть рациона, а также при котором введен ранее не использовавшийся ген или в случае, если модификация может причинить множественные изменения в химическом составе. Такие исследования должны продумываться очень тщательно. Если пищевой продукт, полученный с использованием ГМО, отличается наличием одного или нескольких генов и их продуктов, иногда можно выделить и протестировать их традиционными токсикологическими методами, как это делается с пищевыми добавками. Важно быть уверенным в том, что выделенные вещества такие же, как и во всем пищевом продукте, и что не существует каких-либо неожиданных дополнительных изменений. Если есть сомнения, то тестирование должен проходить весь пищевой продукт. Традиционные тесты на токсичность для всего пищевого продукта сложны, поскольку при этом происходит скармливание больших объемов одного и того же пищевого продукта, что может привести к очевидным негативным эффектам из-за пищевого дисбаланса или ненормально высокого уровня потребления других токсикантов, которые от природы присутствуют в этом пищевом продукте. Принятие решения о том, какие тесты являются соответствующими, требует очень тщательного рассмотрения многих факторов.

Разработаны подходы к принятию решения о возможно аллергенности продукта, полученного с участием ГМО, и четкая система принятия решении при оценке потенциальной аллергенности пищевых продуктов, полученных с использованием ГМ организмов, представленная на совместном докладе ФАО/ВОЗ 2001 г «Оценка аллергенности генетически модифицированных пищевых продуктов» и консультации экспертов ФАО/ВОЗ по вопросам аллергенности пищевых продуктов, полученных путем генной инженерии.

Экологическая безопасность

В отношении защиты окружающей среды от возможных негативных последствий использования ГМО необходимо подчеркнуть следующее. Законодательство по защите окружающей среды в странах ЕС основано на таких директивах: Директива 90/219/ЕЕС «Ограниченное использование генетически модифицированных микроорганизмов» (1990 год), с изменениями, внесенными Директивой 98/81/ЕЕС в октябре 1998 года;

Директива 90/220/ЕЕС «Преднамеренный выпуск в окружающую среду генетически модифицированных микроорганизмов» (1990 год), которая в настоящее время пересматривается. Ожидается, что ее применение начнется в конце 2002 года.

Директива 2001/18/ЕЕС «Преднамеренный выпуск в окружающую среду генетически модифицированных организмов» (2001 год), которая аннулирует Директиву 90/200/ЕЕС.

Европейское законодательство, контролирующее выпуск ГМО, требует точной оценки риска для человека, животного мира и окружающей среды, поэтому большая часть информации (по потенциальному переносу генов, безопасности генных продуктов и вопросам существенной эквивалентности) также касается оценки безопасности пищевых продуктов. Отдельные страны ЕС ставят своей задачей введение в действие этих Директив через национальное законодательство.

Подходы к выявлению чужеродного генетического материала в пищевой продукции

Требование по маркировке продуктов, содержащих ГМ сою или кукурузу, «кроме случаев, когда отсутствуют генетически модифицированные белки или ДНК...» (Положение ЕС 1139/98) привело к развитию различных методов выявления ГМ продуктов.

К ним относятся следующие.

Методы, основанных на определении белков, которые выявляют трансгенный продукт. Расщепление пищевых белков во время обработки ограничивает выявление использования ГМ белков в сырой пище.

Методы, основанных на определении ДНК, которые выявляют либо трансгены и связанные с ними маркеры, либо регуляторные последовательности ДНК. Определение основывается на очень специфической и чувствительной обработке, приводящей к увеличению числа копий ДНК, и технике выявления, которая называется цепной полимеразной реакцией (ПЦР). Посредством ПЦР может быть идентифицировано большинство ГМ культур и пищевых продуктов.

В то время как сырые пищевые продукты могут уже идентифицироваться как ГМ, при их технологической обработке такая идентификация представляет собой более сложную задачу: комплексно обработанные пищевые продукты содержат поврежденную ДНК и вещества, которые мешают даже ПЦР-анализу. Не смотря на то, что ПЦР работает на сравнительно небольших участках ДНК, выявить трансген становится тем сложнее, чем более переработанным является пищевой продукт.

Полное отсутствие ДНК или белков не может быть доказано, поскольку, каким бы чувствительным не был используемый аналитический метод, он может продемонстрировать лишь отсутствие выявляемых ДНК. Маркировка «Не ГМ» не может быть подтверждена анализом.

Положение о новейших пищевых продуктах и последующее законодательство в настоящее время делают маркировки обязательной по факторам, которые отражают житейские (этические) вопросы, а также вопросы безопасности. В то же время другие формы «житейской» маркировки (например, «органическая», «вегетарианская», «кошерная») осуществляются добровольными организациями.

Это может усложнить вопросы в условиях глобальной гармонизации законодательства по маркировке. Положения по маркировке варьируют по всему миру: в США в настоящее время законодательство не требует обязательной маркировки и сегрегации генетически модифицированных культур и продуктов.

Регулирование процесса биотехнологии в США осуществляют три государственных органа:

Министерство сельского хозяйства США (USDA);

Управление по охране окружающей среды (ЕРА);

Управление продуктов питания и лекарств (FDA).

Именно FDA отвечает за регулирование в области безопасности пищевых продуктов, включая безопасность новых сортов растений, пищевых и технологических добавок. В Федеральном Регистре 29 мая 1992 года (57 FR 229S4) FDA опубликовало «Заявление о политике относительно продуктов питания, полученных из новых сортов растений», которое применяется к пищевым продуктам, полученным из новых сортов растений, включая сорта, созданные с использованием технологий рекомбинантных дезоксирибонуклеиновых кислот (рДНК). При этом FDA использует термин «биоинженерные пищевые продукты» для обозначения пищевых продуктов, созданных с использованием ГМ технологий. Заявление включает руководство, содержащее вопросы, ответы на которые должны дать производители пищевых продуктов из новых сортов растений, чтобы обеспечить безопасность новых продуктов и подтвердить соответствие требованиям действующего законодательства, а также чтобы побудить представителей пищевой промышленности к проведению консультаций с FDA по вопросам безопасности новых пищевых продуктов.

«Не навреди» — оценка качества и безопасности ГМИ пищи в Европе, США, России

Оценивая безопасность пищи из ГМО, следует исходить из того, что трансгенные продукты должны быть так же безопасны, как и традиционные.

Следуя главной заповеди врача «Не навреди», любая новая технология получения чего бы то ни было, что попадает в организм человека, требует самой тщательной проверки, чтобы не принести вреда здоровью.

Потенциально опасные факторы, связанные с пищевыми продуктами, могут происходить от микроорганизмов, от химических веществ, которые попадают в пищевые продукты естественным образом (например, сапонины в картофеле), вводятся в пищевую цепь преднамеренно (например, пищевые добавки, остатки агрохимикатов) или попадают туда случайно (например, вещества, загрязняющие окружающую среду).

Самое главное, что рекомбинантная, и природная ДНК абсолютно идентичны, так как в результате генетической модификации перегруппировывается нуклеотидная последовательность, а химическая структура ДНК никоим образом не изменяется. Принимая во внимание существование в природе многочисленных вариаций последовательностей нуклеотидов в ДНК, использование рекомбинантной ДНК не вносит каких-либо изменений в пищевую цепь.

Функциональные способности этой ДНК связаны с возможным проникновением участка ДНК в клетки микрофлоры кишечника. Наибольшие опасения высказываются по поводу переноса генов устойчивости к антибиотикам в геном бактерий. Показано, что основной объем поступающей с пищей ДНК (в среднем 0,1-1 г/день на человека) подвергается разрушению в пищеварительном тракте, поэтому маловероятно, что неповрежденный фрагмент ДНК будет представлен целым геном с соответствующей регуляторной последовательностью. Так как известно, что встроенный участок составляет только 0,00022% всей ДНК в кукурузе, 0,00018% — в сое, 0,00075% — в картофеле, опасность переноса именно рекомбинантного фрагмента практически исключается. Кроме того, сам по себе, как хорошо известно перенос участков растительной ДНК в геном бактерий подразумевает ряд определенных этапов, вероятность каждого из которых менее 2x10-17.

Встраивание участка рекомбинантной ДНК в геном млекопитающих невозможно, так клетки у них имеют мощные механизмы защиты от встраивания чужеродной ДНК. А само разрушение ДНК при технологической обработке пищи и в желудочно-кишечном тракте дополнительно снижают вероятность трансформации генома.

Что такое композиционная эквивалентность

Среди существующих в настоящее время методических подходов к оценке безопасности пищи из ГМО общепринята концепция композиционной эквивалентности. Она определяется сравнением трансгенного продукта с его традиционным аналогом, то есть наиболее сходным с ним по составу и свойствам пищевым продуктом. Следует обратить внимание на то, что оценка композиционной эквивалентности — исходный пункт оценки безопасности. Установление композиционной эквивалентности ГМ продукта его традиционному аналогу проводится для того, чтобы определить весь необходимый набор исследований пищи из ГМО.

В настоящее время большинство пищи из ГМО относится ко второму классу безопасности, так как производящиеся в промышленных объемах трансгенные продукты по компонентному составу отличаются от традиционных лишь присутствием 1-2 белков, отвечающих за проявление желаемого признака. Дальнейшие исследования, направленные на изучение свойств нового белка и его влияния на организм, включают определение аллергенных и токсикологических характеристик.

Следует отметить, что оценка безопасности пищи из ГМО на основе концепции композиционной эквивалентности в ближайшем будущем может оказаться несостоятельной в связи с началом массового производства трансгенных продуктов с измененным составом. Поиск возможных подходов к оценке безопасности таких ГМО ведется уже сейчас, и в качестве путей решения проблемы предлагается использовать направления современной науки — геномику (определение структуры и функции ДНК), протеомику (определение белкового профиля) и метаболомику (определение вторичных метаболитов).

В США набор обязательных исследований пищи из ГМО включает три основных этапа, из которых первый и второй — изучение композиционной эквивалентности и свойств нового белка — аналогичны принятым в Европейском Союзе, тогда как третий этап (исследование на животных) проводится на крысах, цыплятах-бройлерах, рыбах и дойных коровах, что обусловлено необходимостью сравнения пищевой ценности изучаемого продукта с его традиционным аналогом.

По принятой в Европейском Союзе системе, одобренной ВОЗ и ФАО, если в ходе изучения химического состава трансгена не обнаруживается каких-либо отличий от его традиционного аналога (по молекулярным и фенотипическим характеристикам, уровням содержания ключевых нутриентов, антиалиментарных, токсичных веществ и аллергенов, характерных для данного вида продукта или определяемых свойствами переносимых генов), данный генетически модифицированный источник пищи причисляют к первому классу безопасности, не нуждающемуся в дальнейших исследованиях. Если обнаруживаются некоторые различия с традиционным аналогом (присутствие новых и/или отсутствие каких-либо компонентов) — ко второму классу, и исследования сосредоточены именно на этих различиях, а если имеет место полное несоответствие аналогу — к третьему классу безопасности, при этом экспертная оценка генетически модифицированного источника пищи должна быть продолжена. Пищевая продукция, произведенная из ГМО, относится к категории новой пищи, полученной с применением новых технологий, и, следовательно, каждый новый сорт генетически модифицированного растения, предназначенный для использования в питании человека, проходит оценку на качество и безопасность, а после выхода его на продовольственный рынок осуществляется мониторинг за оборотом пищевой продукции, произведенной из данного ГМО, или содержащей его в качестве компонента.

Необходимость разработки такой системы контроля в России возникла в 1995 году, когда было начато широкомасштабное производство продукции из ГМО, которое привело к появлению ее на мировом продовольственном рынке. Возникла большая вероятность попадания пищевой продукции из ГМО на внутренний рынок Российской Федерации без соответствующей декларации, регистрации и без оценки на качество и безопасность. В связи с этим уже в 1995 году Минздрав России ввел требование об обязательном декларировании использования ГМО в импортируемых пищевых продуктах, которые имеют генетически модифицированные аналоги.

В настоящее время все пищевые продукты, впервые разрабатываемые и внедряемые для промышленного изготовления, а также впервые ввозимые и ранее не реалнзовывзвшиеся на территории Российской Федерации, проходят всестороннюю проверку. Систему регулирования генно-инженерной деятельности и контроля безопасности ГМО (в том числе трансгенных растений), пищевой продукции и кормов из ГМ-источников в России регламентируют свыше 60 документов, в том числе постановления Правительства РФ, постановления Главного государственного врача РФ, ведомственные акты и ряд федеральных законов, в т.ч. «О санитарно-эпидемиологическом благополучии населения» № 52-ФЗ от 30.03.99, «О качестве и безопасности пищевых продуктов» № 29-ФЗ от 02.01.2000, «О государственном регулировании в области генно-инженерной деятельности» № 86-ФЗ от 05.07.96 и другие. В связи с бурным развитием генно-инженерных технологий эти законы требуют внесения ряда изменений и дополнений, которые находятся на стадии разработки.

Методы определения ГМО в пищевых продуктах

Их разработка началась одновременно с выходом пищевой продукции из ГМО на мировой продовольственный рынок. В настоящее время подавляющее большинство ГМО растительного происхождения, представленных на рынке, как было сказано выше, отличается от исходного традиционного сорта растения наличием в геноме рекомбинантной ДНК — гена, кодирующего синтез белка, который определяет новый признак, и последовательностей ДНК, регулирующих работу этого гена, а также собственно нового белка. В качестве мишени для определения ГМО в пищевом продукте могут рассматриваться как новый модифицированный белок, так и рекомбинантная ДНК.

Химические методы анализа продуктов из ГМО. Если в результате генетической модификации меняется химический состав пищевого продукта, для ее определения могут применяться химические методы исследования — хроматография, спектрсфотометрия, спектрофлюориметрия и другие, которые и выявляют заданное изменение химического состава продукта. Так, генетически модифицированные линии сои G94-1, G94-19, G168 имеют измененный жирнокислотный состав, сравнительный анализ которого показал увеличение содержания олеиновой кислоты в генетически модифицированной сое (83,8%) по сравнению с ее традиционным аналогом (23,1%). Применение в данном случае метода газовой хроматографии позволяет выявить генетическую модификацию сои даже в таких продуктах, которые не содержат ДНК и белка, например, рафинированное соевое масло.

Анализ нового белка. Присутствие в продукте нового белка дает возможность применять для определения ГМО иммунологические методы. Они наиболее просты в исполнении, имеют относительно низкую стоимость и позволяют определить конкретный белок, несущий новый признак. В настоящее время разработаны тест-системы, применяя которые можно проводить количественное определение модифицированного белка в таких продуктах, как изоляты и концентраты соевого белка и соевая мука. Однако в случае анализа пищевых продуктов, при производстве которых исходное сырье подвергается значительной технологической обработке (высокая температура, кислая среда, ферментативная обработка и др.), иммунологический анализ может давать нестабильные или плохо воспроизводимые результаты из-за денатурации белка. При исследовании, например, колбасных и кондитерских изделий, продуктов детского питания, пищевых и биологически активных добавок к пище иммуноферментный анализ неприемлем.

Возможность определения белка ограничена уровнем его содержания в продукте. Так, в большинстве генетически модифицированных культур, представленных на мировом продовольственном рынке, уровень модифицированного белка в частях растений, употребляемых в пищу, ниже 0,06%, что затрудняет проведение иммуноферментного анализа. Учитывая это, в большинстве стран основные способы определения ГМИ в продуктах — методы, основанные на определении рекомбинантной ДНК, например, метод полимеразной цепной реакции (ПЦР).

Полимеразная цепная реакция. Строение ДНК одинаково во всех клетках организма, поэтому любая часть растения может быть использована для идентификации ГМО, что невозможно в случае определения модифицированного белка

ДНК более стабильна, чем белок, и в меньшей степени разрушается при технологической или кулинарной обработке пищевых продуктов, что делает возможным определение в них ГМО.

Метод идентификации рекомбинантной ДНК включает несколько этапов:

• выделение ДНК из пищевого продукта

• умножение (амплификация) специфической ДНК, характерной для определенного сорта генетически модифицированного растения

•   электрофорез продуктов полимеразной цепной реакции (ПЦР) и фотографирование результатов электрофореза.

Как было указано выше, при создании трансгенного растения в геном вносится генетическая конструкция, которая состоит не только из гена, определяющего новый признак, но и последовательностей ДНК, регулирующих работу гена. Для этих целей используется метод ПЦР с маркерами на последовательность ДНК (ген), определяющий новый признак. Результат анализа позволит обнаружить тот сорт генетически модифицированного растения, который был использован при производстве анализируемого продукта.

В России в 2000 году метод ПЦР был утвержден Минздравом РФ в качестве основного для идентификации ГМИ растительного происхождения в пищевых продуктах. Чувствительность этого способа позволяет определить ГМИ в продукте, даже если его содержание не превышает 0,9%. Такой подход соответствует рекомендациям ВОЗ, принятым в большинстве стран мирового сообщества.

В 2003 году утвержден и введен в действие постановлением Госстандарта России N2 402 ст. от 29.12.2003 г. национальный стандарт Российской Федерации ГОСТ Р 52173-2003 «Сырье и продукты пищевые. Метод идентификации ГМО растительного происхождения», который утвердил этот метод для определения ГМ в пищевых продуктах.

Одновременно был утвержден национальный стандарт Российской Федерации ГОСТ Р 52174-2003 «Биологическая безопасность. Сырье и продукты пищевые. Метод идентификации генетически модифицированных источников (ГМИ) растительного происхождения с применением биологического микрочипа», основанный на ПЦР и включающий те же этапы, что и предыдущий. Отличие лишь в последней стадии, которая предполагает вместо электрофореза гибридизацию на биологическом микрочипе.

С помощью обоих методов, изложенных в указанных национальных стандартах, с одинаковой степенью надежности можно определить присутствие ГМ растительного происхождения в пищевых продуктах.

Надо ли маркировать продукты, полученные из ГМО?

«Изготовитель обязан своевременно предоставить потребителю необходимую и достоверную информацию о товарах, обеспечивающую возможность их правильного выбора» (из закона «О защите прав потребителей»).

Как отмечено выше, пищевая продукция из ГМО относится к категории пищи, полученной с применением новых технологий. В связи с этим возникает вопрос: нужна ли на этикетке этих продуктов дополнительная информация для потребителя об использовании генно-инженерных технологий при их производстве? В настоящее время в разных странах мирового сообщества применяются различные подходы к этой проблеме.

Так, в США — лидере в области производства ГМИ пищи, обладающих наиболее длительным опытом их потребления, — пищевая продукция из ГМО дополнительной маркировке не подлежит. Если продукт, полученный из ГМО, не отличается по пищевой ценности и безопасности от аналогичного, произведенного с применением традиционных технологий, способ его получения не имеет значения для потребителя. В FDA США считают, что наличие дополнительной маркировки на продукте может ввести в заблуждение потребителя в плане его безопасности, вызвать ненужные и необоснованные сомнения и волнения.

Однако в большинстве государств законодательство в области регулирования оборота пищевой продукции, полученной из ГМО, предусматривает обязательное нанесение на этикетку информации о том, что при производстве данного продукта использованы генно-инженерные технологии. Законодательные органы в этих странах считают, что хотя безопасность продуктов из ГМО, которые были выпущены на мировой продовольственный рынок, доказана, потребитель имеет право знать способ производства продукта, чтобы сделать осознанный выбор.

В странах Европейского Союза в этом плане наиболее жесткая позиция, предусматривающая обязательную маркировку для всей пищевой продукции, содержащей более 0,9% компонентов из ГМО. Это относится и к продуктам, не содержащим носителей генетической модификации, то есть белка или ДНК, таким, как рафинированное растительное масло, сахар, крахмал. Контроль наличия дополнительной маркировки на этикетке продуктов, содержащих ДНК или белок, проводится инструментально с использованием методов, основанных на количественном определении рекомбинантной ДНК или модифицированного белка. Что касается контроля наличия маркировки на этикетке продуктов, не содержащих ДНК и белка, он осуществляется по документам. От поля, где выращивается сырье для производства продукта, и далее при его транспортировке и хранении до поступления к потребителю он сопровождается документами с указанием способа его производства. Эта информация на конечном этапе выносится на потребительскую этикетку.

В ряде стран используются другие пороги для маркировки. Например, в Канаде и Японии она обязательна для продукции, содержащей 5% компонентов из ГМО, в Южной Корее — 3%, Австралии — 1%. Нужно подчеркнуть, что выбор определенного процента в качестве порога для маркировки не связан с безопасностью продукта.

В России впервые требование нанесения на этикетку пищевой продукции из ГМО информации о способе ее производства введено в 1999 году. Связано это было с разрешением использовать в пищевой промышленности и реализации населению первого ГМИ пищи — сои линии 40-3-2, устойчивой к глифосату. Однако это требование носило рекомендательный характер. С 2002 года, когда была создана методическая и инструментальная база, позволяющая проводить исследования на наличие ГМО в пищевых продуктах, а в системе Госсанэпиднадзора подготовлены специалисты для проведения такого рода анализов, введена обязательная маркировка пищевой продукции, полученной из ГМО. Такая позиция Минздрава РФ связана с реализацией прав потребителя на полную и достоверную информацию о пищевых продуктах. Хотя безопасность продуктов из ГМО, выпущенных на продовольственный рынок, доказана всеми существующими на настоящий момент методами, потребитель имеет право осознанного выбора продукта — например, с учетом своих религиозных или этических убеждений, или если он просто консервативен и опасается всего нового.

В 2003 году с целью гармонизации подходов к регулированию оборота пищевой продукции из ГМО в России и странах Европейского Союза введена обязательная маркировка пищевой продукции, содержащей более 0,9% компонентов из ГМО, включая произведенную из ГМО, но не содержащую ДНК и белка.

Сейчас в мире уже создано и разрешено для реализации населению более 100 сортов различных сельскохозяйственных культур, произведенные из которых пищевые продукты широко представлены на мировом продовольственном рынке.

«Движение сопротивления»

Достижения генетиков радуют далеко не всех. В мире уже появились профессиональные борцы с «индустриальной пищей». Они уничтожают посевы с генетически измененными культурами, отказываются от консервов из трансгенных томатов и других модифицированных сельскохозяйственных культур.

Мир раскололся на три лагеря. В первый входят США, где трансгенными культурами засеяно уже свыше 60 млн га, Канада, Австралия, Мексика, Бразилия и Аргентина. Эти страны стоят за внедрение и коммерциализацию новых достижений генной инженерии в сельском хозяйстве. В Аргентине и Канаде даже полагают, что вовсе не обязательно указывать на этикетках продуктов наличие в них трансгенных культур.

Кто против генных новаций? Страны Африки, Малайзия, ряд латиноамериканских стран. Здесь боятся, что вал новомодной генной сельскохозяйственной продукции подорвет позиции собственных национальных производителей.

Особую позицию занимают страны Европейского сообщества. Ведя собственные генные разработки новых растений, они одновременно ограничивают импорт трансгенных растений из других стран и стараются как-то реагировать на озабоченность потребителей, робеющих или просто нежелающих привыкать к новой растительной пище.

Есть ли случаи откровенной неприязни к этим нововведениям генетиков?

Немецкие активисты «Гринписа» в 1999 году устроили демонстрацию перед штаб-квартирой американской корпорации «Юнилевер» в Гамбурге. Они, нацепив на головы маски кроликов и баранов, протестовали против производства генетически модифицированной сои. В Англии активисты британского отделения движения «Друзья Земли» требуют введения пятилетнего моратория на производство генных продуктов. Они называют генетически измененную пищу «пищей Франкенштейна», творением злого гения.

В ноябре 1998 года в одном из индийских штатов местные фермеры сожгли два экспериментальных поля генетически измененной пшеницы. Ее производила американская компания «Монсанто». Ученые из этой компании изобрели особый биологический механизм, названный ими «Терминатор». Суть в том, что зерна новой пшеницы после первого урожая уже не прорастали. Такое запрограммированное бесплодие заставляло потребителей американской пшеницы (по урожайности и устойчивости к вредителям новая пшеница была замечательной) вновь и вновь обращаться к услугам «Монсанто». Это-то оригинальное решение проблемы «авторских прав» на семена (а заодно — и возможности распространения трансгенов) вызвало гнев клиентов компании по всему миру. Оттого-то индусы и спалили две плантации. «Монсанто» вынуждена была отказаться от использования «Терминатора», хотя это их право и их труд.

В марте 1999 года в колумбийском городе Картахена состоялось очередное заседание Всемирной торговой организации (ВТО). Собрались представители 130 стран. Они должны были подписать «Биотехнологический протокол». Выработать правовой механизм, регулирующий производство и международную торговлю продукцией, полученной с помощью генной инженерии. Требовалось также укрепить принцип «Не навреди!». Эти переговоры провалились. Расколотый на три лагеря мир не смог договориться. США и ряд других стран, являющихся основными производителями сельскохозяйственной продукции в мире, требовали режима «открытых границ». Другие участники переговоров выступали против этого. Они указывали на то, что безвредность новых продуктов для природы и людей не доказана. Требовали, чтобы фирмы-производители несли юридическую и финансовую ответственность в случае, если их новые товары начнут наносить вред.

Еврокомиссия не дала разрешение на посадку в Испании, Португалии и других странах Европы американской генетически модифицированной кукурузы. В результате США понесли убыток в размере 200 миллионов долларов. Австрия и Люксембург вообще запретили в своих странах коммерческое выращивание растений с измененными генами. Фермеры Греции с черными флагами в руках растоптали плантации трансгенных помидоров. А английские «зеленые», надев резиновые костюмы и маски химзащиты, совершили нашествие на поля экспериментальной генетической плантации в Оксфордшире (70 километров от Лондона).

Ситуация накаляется. Страсти кипят. Даже в инертной России Минздрав решил с 1 июля 1999 года проводить медико-генетическую экспертизу импортных сельскохозяйственных продуктов. А в Украине до сих пор нет закона о ГМО. И в США Национальная академия наук создала в 1999 году комиссию из 18 экспертов, которые официально должны давать заключение о пользе или вреде генетически измененных растений и животных. Чем завершится эта борьба, сказать трудно. Возможно, генные инженеры будут более активно переключаться с растений как источника пищи на что-то иное. Ведь уже созданы прототипы растений, содержание целлюлозы в которых во много раз больше обычного, что позволит выпускать бумагу с низким уровнем токсичных отходов. Можно попробовать и выращивать растения, содержащие углеводороды, что позволило бы решить проблему уменьшающихся запасов нефти на планете.

Другое дело, что проблемы голода и глобального экологического кризиса как-то надо решать — а пока иной реальной альтернативы, чем генетически модифицированные организмы, никто и не предлагает...

Заключение

Человечество переживает глобальный экологический кризис. Статистические данные, которыми оперируют экологи, давно перестали кого-либо пугать — сработал эффект пресыщения. Ежегодно фиксируется от 40 тысяч до 2 миллионов случаев отравления людей пестицидами. С лица Земли исчезло 25 тысяч видов высших растений и тысяча видов позвоночных. К 2015 году, по прогнозам, на планете существенно увеличится количество людей, не имеющих нормального доступа к питьевой воде. Физиологам известно, что нарушение полноценного питания в младенческом возрасте приводит к замедлению интеллектуального развития человека. Кризис аграрной цивилизации, голод чреват тем, что в каждом поколении вероятность полноценной реализации интеллектуального потенциала уменьшается. Другими словами, у каждого последующего поколения остается меньше шансов находить приемы выхода из кризиса, поскольку суммарный интеллект становится все меньше и меньше. Для восточноевропейских стран известна проблема, которая получила название «славянский крест», ежегодное превышение количества умерших над рожденными. Определенный вклад в этот феномен вносит и экологическое неблагополучие. Глобальный экологический кризис является прямой угрозой существованию человека как вида.

Локальные экологические кризисы человечество переживало неоднократно, и всегда находило из них выходы, теряя на этом пути часть своего генофонда. В раннем плейстоцене (1,6 млн лет назад) на смену «человеку умелому» пришел «человек прямоходящий» — Homo ereclus, которого прежде называли питекантропом; именно в это время полностью вымирают австралопитеки. Вымирает другая ветвь эволюции человечества — неандертальцы, из-за конкуренции за пищу с человеком разумным — возможно, их съели наши предки. Обширные пустыни на севере Африки — результат очередного экологического кризиса: первые земледельцы тысячи лет назад расчищали территории под пашню, выжигая громадные территории. Появляется одна из форм внутривидовой кооперации, отличающей человека от прочих животных (включая приматов) — способность делиться пищей; ее считают одной из фундаментальных черт человеческого общества, возникшей (по археологическим данным) уже у плиоценовых гоминид. В дальнейшем возникает необходимость в специальном месте, где этот дележ и происходит — иными словами, в жилище. Судя по всему, жилище, разделение труда и дележ пищи возникают уже на самых начальных этапах эволюции человека разумного.

Появление генно-культурных факторов ограничивает агрессию внутри племени, возможно за счет переноса ее на «чужаков». Искусственное ограничение агрессии служило условием выживания ранних гоминид. Убойная сила появившегося нового оружия, таких как галечные отщепы, кости, палки и тд. оказалась несоразмерна прочности черепа и силе инстинктивного торможения. Выжили те немногие племена, в генетической структуре которых сформировались дополнительные, надприродные (надгенные) факторы регуляции отношений, т.е. возникли механизмы подавления большинства природных инстинктов уже на ранней стадии антропогенеза. Другой комплекс характерных для людей поведенческих реакций связан с заботой о потомстве. Потомство человека зависит от других людей (в первую очередь от родителей) много дольше, чем у любого другого примата. Одно из следствий этого — высокая степень взаимозависимости человеческих индивидуумов; это касается не только детей, но и самих взрослых, которых объединяет присутствие малышей, нуждающихся в заботе. Все это ведет к тому, что основой человеческого поведения становится кооперация между индивидуумами. В этом направлении и продолжало развиваться семейство гоминид.

Кризисные ситуации, периодически возникавшие на начальном этапе антропогенеза, послужили толчком для нового эволюционного события — земледелия, приуроченного к началу неолита. С ним связано развитие неолитической, или первой сельскохозяйственной (технологической) революции — перехода от высокозатратного присваивающего (охота, собирательство) к производящему хозяйству (земледелие, скотоводство), сопровождавшегося сменой нормативного геноцида и каннибализма (людоедства) зачаточными формами коллективной эксплуатации. Другая сторона этого этапа — объединение земледельческих и «воинственных» племен в многотысячные сообщества — снизило исконную враждебность первобытного человека к любому незнакомцу.

Экономисты называют этот исторический момент переходом от присваивающей экономики к производящей. Революционным в данном событии следует считать то, что человек перешел на принципиально новые отношения с природой. Впервые природный биологический цикл частично был заменен на искусственный, основанный на выращивании растений. К 5000 г. до н.э. были окультурены многие зерновые: пшеница и ячмень — на Ближнем Востоке, маис — в Центральной Америке, рис — в Китае, картофель — в Южной Америке и доместицированы многие виды животных. Такому прогрессу Homo sapiens способствовала одна особенность, выделявшая его среди остальных обитателей животного мира — способность накапливать информацию благодаря речевому аппарату, а позднее —письменности, передавать ее от поколения к поколению и формировать культурное наследие.

Земледелие и скотоводство позволили людям перейти к оседлому образу жизни, производить и обмениваться продуктами своего труда. Так возникла торговля, стали образовываться поселения — прообразы будущих городов, началось зарождение цивилизации со всеми присущими ей атрибутами — формированием государств, экономики, науки, искусства. Развитие земледелия и животноводства коренным образом изменило условия существования человека. Площадь земли, необходимая для обеспечения питанием одного индивидуума, сократилась примерно в 500 раз по сравнению с необходимой для собирателя, и в 5000 раз — для охотника. Это способствовало увеличению численности людей. К началу новой эры она возросла до 100-200 млн. человек, то есть увеличилась почти в 1000 раз по сравнению с ранним неолитом.

В то же время развитие аграрной цивилизации шло по экстенсивному пути — истощалось плодородие земель, люди осваивали новые земли. И в современном мире, создав карту деградации почв на земном шаре, ученые выяснили: с каждым годом площадь, занимаемая пустынями, возрастает на один процент. Сейчас она составляет 19% Земли. Только Сахара ежегодно расширяется на километр. При сопоставлении данных стало понятно, что те места, в которых сейчас находятся пустыни, 10 тысяч лет назад были очагами зарождения аграрной цивилизации. Она, согласно истории, возникла тогда, когда были одомашнены первые виды животных и растений. Это произошло во время первой экологической катастрофы, когда человеку стало нечего есть. Тогда и возник «агро хомо сапиенс» (человек разумный сельскохозяйственный) и новый тип хозяйствования — преобразующий, замещающий общество «охотников-собирателей». Уменьшилась необходимость постоянной миграции, женщины стали больше рожать, популяция возрастала и требовала большего количества пищи.

Распространение аграрных цивилизаций сопровождается увеличением степени деградации почв. Экстенсивный путь развития — это захват новых земель с последующим их опустыниванием. Попытка интенсивного развития аграрной цивилизации с применением химизации на первых порах позволила думать, что таким путем можно решить проблему голода в мире. Но жизнь показала, что увеличение урожаев, по сути, уже прекратилось, и дальнейшая химизация принципиально невозможна. К тому же она сопровождалась насыщением биосферы огромным количеством доселе не существовавших в природе веществ, что серьезно повлияло на экологическую ситуацию в целом. Ведь продуктивность аграрной цивилизации определяется состоянием тех экосистем, в которые они «встроены». Если, к примеру, поля будут окружены меньшим количеством лесов, изменится и система восстановления грунта, система доступа воды и очищающие способности почвы.

Дальнейшее насыщение окружающей среды химическими веществами приведет к еще большему кризису аграрной цивилизации, негативному влиянию на здоровье людей. Аллергические дерматиты стали уже привычным явлением. А связь злокачественных новообразований и заболеваний дыхательных путей с техногенным загрязнением достаточно хорошо документирована. Установка на уничтожение вредителей, патогенных агентов и всего, что мешает человеку или сельскохозяйственным видам, исчерпала себя. Становится очевидным, что добиться успеха можно только помогая собственным защитным силам разных организмов, в частности, имитируя приемы, на которых держится симбиоз (взаимная полезность видов друг другу) в природе. Ранее считалось, что выживает сильнейший, а теперь оказывается: выживает тот, у кого больше симбиотических связей. Природа устроена таким образом, что каждая ее частичка поливалентна. И если исчезает один вид, то вслед за ним исчезнет еще десять. Человек стал разрушать эти связи, и стала разрываться цепочка.

Если говорить об интенсивном развитии аграрной цивилизации, то нужно вести поиск приемов ускоренного видоизменения видов, лежащих в ее основе. В том числе и создавать генетически модифицированные организмы (ГМО). Методы, которые используют при создании таких организмов, относятся к ДНК-технологиям. По своей сути они взяты из живой природы и ни чем не отличаются от тех, которые люди бессознательно использовали для увеличения продуктивности агросистем на протяжении всего периода развития аграрной цивилизации. За исключением одного — времени, необходимого для получения конечного результата. Очевидно, с чем это связано. Если раньше, истощив плодородие земель, человек мог передвинуться на новую территорию, то теперь плодородные территории закончились. Кроме того, резко изменилась скорость экологических изменений. Нужен или новый Земной шар, или качественно новое ускорение увеличения эффективности аграрной цивилизации.

ДНК-технологии сегодня — одна из ключевых высоких технологий. По стоимости своей продукции она уже сегодня сравнима с такими мощными отраслями, как машиностроение, химия, электроника. По прогнозам, в XXI в. полученные с ее помощью продукты составят не менее 20% всех товаров, поступающих на мировой рынок. В развитых и динамично развивающихся странах ДНК-технологию относят (в зависимости от страны) к первому, второму, третьему из приоритетных направлений. Она включена во все программные документы, посвященные стратегии развития, публикуемые ООН, ЕС, правительствами отдельных государств. Количество публикаций по вопросам, связанным с ДНК-технологией, в мире огромно. Только в библиотеке Конгресса США более миллиона источников, опубликованных только за последние 20 лет.

Парадигма ДНК-технологии определяется глобальными социальными задачами. Основные цели ее развития — решить проблему голода, создать эффективные средства лечения людей и защиты окружающей среды, предложить альтернативные экологически чистые технологии с низкой энергоемкостью и высокой степенью утилизации сырья в сельском хозяйстве, металлургии, энергетике и других отраслях. Многие считают, что единственный выход сейчас, в связи с глобальным загрязнением, потеплением и т.д. — переход к биологическому этапу развития цивилизации. В связи с этим должны вырабатываться новая парадигма существования и новый стиль мышления. В общем, это новый этап эволюции старой цивилизации. Необходима новая биологическая культура, а следовательно, широкое биологическое и экологическое образование людей.

Важно подчеркнуть, что методы получения трансгенных организмов, биопрепаратов, иммуностимуляторов начали активно развиваться еще в середине прошлого века до того, как проявилось осознание экологического кризиса и популяционного взрыва численности человечества. Это говорит о том, что человеческий разум, как видовая характеристика, имеет механизмы, обеспечивающие ему спасение. Они вырабатываются внутри него бессознательно, когда наступает прямая необходимость.

В настоящее время методы биотехнологии все активней используют в защите растений (от вредных насекомых и сорняков с помощью биологических средств бактериальной, вирусной и грибной природы), в лечении животных (предупреждение и лечение таких инфекционных заболеваний, как бешенство, ящур, бруцеллез, вирусная диарея с помощью вакцин и лекарств), для улучшения пород (сортов) сельскохозяйственных животных и растений, в охране окружающей среды (биодеградация поллютантов, создание интегральных систем экологической защиты с использованием экосистемной биотехнологии), при производстве микробной биомассы — белка одноклеточных организмов и топлива (этанола, бутанола, 2,3-бутандиола, ацетона, метана, водорода) с помощью микроорганизмов. В медицине биотехнологии находят применение в производстве антибиотиков, ферментов, антиопухолевых агентов, факторов иммунитета, вакцин и диагностических средств. Методические и теоретические основы генотерапии разрабатываются, в первую очередь, с целью получения высокоэффективных и надежных способов лечения человека, однако задачами биотехнолопий, в частности, ДНК-технологий являются и поиски приемов, направленных на повышение продуктивности сельскохозяйственных животных, а также разработку новых и экономичных методов их лечения.

Как и все высокие технологии, биотехнология оказывает большое воздействие на общество. Развитие биотехнолопий повышает качество жизни людей, в том числе и в развивающихся странах, делает доступными для широких масс населения материальные блага (лекарства, пищевые продукты и пр.), которые еще недавно были прерогативой самых богатых слоев общества, способствуя, таким образом, сглаживанию остроты проблемы неравенства.

В то же время внедрение биотехнологии и других высоких технологий может способствовать закреплению и усилению неравенства на всех уровнях (между бедными и богатыми странами, между крупными мелкими производителями и т.д.), так как оно требует больших капиталовложений, высокой технической оснащенности, наличия высококвалифицированных кадров, что делает его труднодоступным для бедных. Например, создание в 60-70-х годах XX в. в развитых странах биотехнологических производств по получению подсластителей (глюкозо-фруктозного сиропа и др.) привело к снижению экспорта сахара из развивающихся стран в 2,5 раза. В результате миллионы людей в Карибском бассейне лишились источника существования, это увеличило социальную напряженность в регионе и подтолкнуло многих крестьян к выращиванию наркотических растений.

Даже в одной из самых социально благополучных стран — США — внедрение ДНК-технологий в сельское хозяйство вызывает сильное противодействие со стороны штатов, где преобладают мелкие фермеры. Жители этих штатов считают, что применение этих методов окончательно приведет к преобразованию сельского хозяйства в отрасль промышленности с преобладанием крупных фирм-производителей, разорив мелких фермеров, разрушив их уклад жизни. Это нанесет существенный вред всей американской культуре, превратит стиль «кантри» в музейный экспонат.

Все эти негативные последствия прогресса не новы, он всегда обогащал одних, разоряя других. Например, внедрение паровых ткацких станков в Англии в начале XIX в. разорило множество мелких ткачей, вызвав воспетое лордом Байроном движение луддитов. Но сейчас Земля стала очень маленькой и уязвимой, и нельзя построить благополучное существование в замкнутом мире своей семьи, своей страны и даже своего континента.

С момента возникновения новейшей биотехнологии, наряду с восторженным ожиданием успехов, высказывались серьезные опасения, что работы в этой области могут представлять угрозу для человека и биосферы. Однако их применение в течение почти 30 лет показало преувеличенность таких опасений. Тем не менее, разработан целый комплекс правил оценки их безопасности. До сих пор не удалось обнаружить ничего, хотя бы отдаленно сравнимого с тем ущербом, который наносится здоровью человека при использовании традиционных методов химизации сельского хозяйства.

Особенно бурные дискуссии вызвал вопрос о допустимости применения самих генетически измененных организмов в окружающей среде (в сельском хозяйстве, лесоводстве, для очистки стоков, для разложения нефтяных загрязнений почвы и водоемов и тд.). Это намного усложнило и удорожило процедуру получения разрешения на коммерческое использование продуктов такого рода. Однако Национальная академия наук США пришла к выводу, что «нет доказательств тому, что существует особая опасность переноса генов между неродственными организмами при использовании технологии рекомбинантных ДНК», и что «риск, связанный с введением рекомбинантных организмов, такой же, как с введением немодифицированных организмов». Правила, регулирующие полевые испытания и применение трансгенных организмов в ЕС, особенно в Германии, были строже, чем США. Поэтому теперь уже европейские фирмы, например такие, как Hoescht (Германия) и Ciba-Geigy (Швейцария), были вынуждены перенести развитие и испытание своих продуктов в США.

Ввиду возникшей угрозы того, что ЕС станет рынком, а не производителем биотехнологической продукции, в середине 1990-х годов европейские страны начали ослаблять требования в области биотехнологии. Серьезная потенциальная опасность, связанная с развитием современной биотехнологии — возможность военного применения ее достижений. В США Министерство обороны заключило с биотехнологическими фирмами десятилетний контракт на 332 млн. долл. для производства вакцин от биологического оружия. Цель проекта — защита страны от террористов.

XX век называли по-разному: «Век социальных революций» и «Век мировых войн», «Век атома» и «Век космоса», «Век информатики». Символично, однако, что на протяжении всех ста лет со времени вторичного открытия законов Менделя, даты, считающейся официальным днем рождения новой науки, генетика оставалась в центре внимания и научного сообщества, и общественного мнения в целом. И если имя Грегора Менделя обрело всемирную известность в начале завершившегося XX столетия, а в его середине был расшифрован генетический код, то конец его отмечен совместным заявлением президента США и премьер-министра Великобритании о почти полной расшифровке молекулярной структуры генома человека. Генетика — это наука, с которой человечество переступило грань тысячелетий, и над ее проблемами и их последствиями мы, несомненно, будем размышлять и в новом столетии. Именно генетика, как известно, построила научный фундамент для таких наук о человеке как медицина, психология, педагогика, антропология и др. Благодаря ей осуществляются все типы современной селекции, все шире использующей методы генетической инженерии и биотехнологии. Поскольку эта область научных интересов являлась катализатором и субстратом преобразования мировоззрения и стиля мышления человечества, естественно, что она стала источником социально- политических проблем, конфликтов, споров; основой для проникновения в естествознание политики и политиканства. Результаты последнего хорошо видны на примере СССР, на примере трагической судьбы Н.И. Вавилова, когда генетика была использована как орудие политической борьбы людьми типа Лысенко и его последователей в собственных интересах. Важно, чтобы в новом тысячелетии для славянских стран возобновилась связь времен именно с Н.И. Вавиловым, с его работами в области генетики и селекции, а не с Лысенко и традициями манипуляций общественным сознанием в личных целях. Это единственный путь выйти из ситуации научной самоизоляции и, не смотря на «славянский кресте, попытаться сохраниться.


Оглавление

  • Предисловие
  • Кризис аграрной цивилизации
  •   14 основных проблем, стоящих перед человечеством, или почему нужна современная биотехнология
  •   Краткий исторический очерк развития биотехнологий в аграрной цивилизации
  •   Болезни культурных растений как двигатель эволюции аграрной цивилизации
  • Традиционные экстенсивные пути увеличения продуктивности агроэкосистем
  •   Основная нравственная проблема эволюции человека — голод
  •   От каннибализма до ГМО
  •   Проблема голода и генные технологии — есть ли альтернатива для человечества?
  •     «Зеленая революция»
  •     Исчерпанность возможностей зеленой революции
  •     Дефицит плодородных почв
  •     Поиски выхода с использованием генетически модифицированных организмов
  •     Гпавная проблема природной генетической инженерии — ее медлительность
  •     Недостатки традиционной селекции и современные пути их преодоления
  • Интенсивный путь развития аграрной цивилизации
  •   Новый взгляд на эволюцию. «Генетическая инженерия» в природных экосистемах
  •   Какие генно-инженерные приемы подсмотрены в природе
  •   Методология прикладного использования ДНК-технологий
  • Прикладные ДНК-технологии: достижения и перспективы
  •   Основные задачи современной селекции
  •     ГМ растения, устойчивые к насекомым-вредителям
  •     Гербицидустойчивые растения
  •     ГМ растения, устойчивые к болезням
  •     Устойчивость к вирусам и вироидам
  •     Активизация защитных систем организма и устойчивость к абиотическим факторам
  •     ГМ растения с заданным химическим составом и структурой молекул (аминокислоты, белки, углеводы)
  •     ГМО для улучшения сохранности и качества плодов и овощей
  •     Генетичесии модифицированный рис как одна из моделей решения проблем питания
  •     Генетически модифицированная кукуруза
  •     Генетически модифицированный картофель
  •     Генетичесии модифицированные томаты
  •     Генетически модифицированная соя
  •     Усовершенствование качественных характеристик продукции растениеводства
  •     Направления коммерческого использования генетически модифицированных организмов
  • Генная инженерия и лекарственные препараты
  •   Микробиологическое производство лекарственных средств
  •     Первые продукты из ГМО — антибиотики
  •     Интерфероны
  •     Гормон роста
  •     Муковисцидоз
  •     Профилактика отторжения трансплантированных органов
  •     ГМ растения — продуценты фармакологических препаратов
  •     Использование ДНК-технологий для разработки вакцин
  •   Азбука здоровья — здоровые продукты
  •     Пища как лекарство
  •     Растения-биореакторы
  •     Генные технологии в борьбе с загрязнением окружающей среды. Фиторемедиация
  •     Биотопливо
  •     ГМО и биоразнообразие
  • Генетически модифицированные организмы и оценка их безопасности
  •   Общие правила проверки безопасности ГМО
  •   Тревоги обоснованные и мнимые
  •   Риск и возможная опасность ГМО и их научная проверка
  •   Опасность ГМО и опасность применения пестицидов
  •     Темпы распространения ГМО
  •     Оценки риска распространения ГМО
  •     Пищевая безопасность. Принцип эквивалентности
  •     Экологическая безопасность
  •     Подходы к выявлению чужеродного генетического материала в пищевой продукции
  •   «Не навреди» — оценка качества и безопасности ГМИ пищи в Европе, США, России
  •   Что такое композиционная эквивалентность
  •   Методы определения ГМО в пищевых продуктах
  •   Надо ли маркировать продукты, полученные из ГМО?
  •   «Движение сопротивления»
  • Заключение